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Teichmüller was the first person to point out explicitly the con­
nection between quadratic differentials and the solutions of certain 
extremal problems in Function Theory. He enunciated the principle 
that if a point is required to be fixed the quadratic differential will 
have a simple pole there, if in addition fixed values are required for 
the first n derivatives of competing functions the quadratic differen­
tial will have a pole of order n + 1. He was led to this principle by 
abstraction from the numerous results of Grötzsch and by his con­
siderations on quasiconformal mapping. However, he never proved 
any general result embodying this principle. 

The General Coefficient Theorem provides such a result and in­
cludes as special cases virtually every result in the theory of univalent 
functions. We now formulate it in the following form [6; 8] , more 
general than that of earlier statements [ l ; 2] . 

GENERAL COEFFICIENT THEOREM. Let 9Î be a finite oriented Rie-
mann surface, Q(z)dz2 a positive quadratic differential on dt, {A} an 
admissible family of domains Ay, j = 1, • • • , K, on 9Î relative to Q(z)dz2 

and {ƒ} an admissible family of functions f j , j — \ , • • • , K, associated 
with {A}. Let Q(z)dz2 have double poles Pi, • • , Pr and poles Pr+i, • • • , 
Pn of order greater than two. We allow either of these sets to be void but 
not both. Let Pj, j^r, lie in the domain A i and in terms of a local param­
eter z representing Pj as the point at infinity let fi have the expansion 

(1) fi(z) — a z -\- ao + negative powers of z 

and Q the expansion 

(2) Q(z) = a^z~2 + higher powers of z~l. 

Let Pj, j>r, a pole of order mj greater than two lie in the domain ai 
and in terms of a local parameter z representing Pj as the point at in­
finity let f i have the expansion 
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U) , i (3) /,(*) - z + £ aT/z 

where kj is the smallest integer greater than or equal to (1/2)w,— 2 and 
Q the expansion 

(4) Q(z] 

Then 

:) = a \z + 2J fa z ' 

(5) 

ƒ ^ <y>. 0) , A 0'>r u) . 1 / I A , </K2 
< 2^ « log a + 2L, « ^m;-8 + — I — *% - 2 ) €,(% ) 

+ tjPkj+iakj > ^ 0 , 

where log a0) = log |a(?) | —id{F, Pj)t j^r and €, = 1 if w, is even\ 
€y = 0 if mj is odd, j > r. 

If equality occurs in (5) each f j , j ~ 1, • • • , K, must be an isometry 
in the Q-metric 

eac& trajectory of Q(z)dz2 in u£ i Ay mws/ gö i#/ö another such and the 
set \J?-ifj(&j) must be dense in 9Î. If equality occurs in (5) ft reduces to 
the identity in a domain Ai for which any of the following conditions 
holds. 

(i) There is in Ai a pole P,-, j>r, of order m$ such that a^ = 0 for 
i<min(kj+l, mj — 3). 

(ii) There is in Ai a pole Pj, j?*r, with the corresponding coefficient 
au) equal to one. 

(iii) There is in Ai a simple pole of Q(z)dz2 or a point on a trajectory 
ending in a simple pole. 

Equality can occur in (5) when there exists a double pole Pj, j^r, 
such that for the corresponding coefficient \ a0) | ^ 1 only when 9t is con-
formally equivalent to the sphere and Q(z)dz2 is a quadratic differential 
whose only critical points are two poles each of order two. If further {A} 
consists of a single domain the corresponding admissible function is 
conformally equivalent to a linear transformation with the points cor-
responding to these poles as fixed points. 

By a quadratic differential on a Riemann surface 9t we mean an 
entity which assigns to every local uniformizing parameter z of 9Î 
a function Q(z) meromorphic in the neighborhood for z and satisfying 
the following condition. If z* is a second local uniformizing parameter 
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of 9Î, if (?*(£*) is the function associated with JS* and if the neighbor­
hood on dt for 2* overlaps that for z, then at common points of these 
neighborhoods we have 

/ dz\2 

Q*{z*) = Q(z) ^ — J . 

We denote quadratic differentials generically by symbols such as 
Q(z)dz2. Clearly we may speak of a quadratic differential having zeros 
and poles of specified order. We denote the set of zeros and simple 
poles of Q(z)dz2 by C, the set of other poles of Q(z)dz2 by H. A maximal 
regular curve on which Q(z)dz2>0 is called a trajectory of the quad­
ratic differential, one on which Q(z)dz2<0 an orthogonal trajectory. 
These curves are evidently independent of the choice of local uni-
formizing parameters. 

In a neighborhood of a point of 9t which is neither a zero nor a pole 
of Q(z)dz2 the trajectories behave like a regular curve family. A zero 
of order JJL or a simple pole (/x = — 1) is the limiting end point of \x-\-2 
trajectory arcs equally spaced at angles of 27r/(/x + 2). At a pole of 
order two the trajectories behave locally either like radial arcs, 
logarithmic spirals or concentric circles. At a pole of order \x(\x>2) 
there are /x — 2 asymptotic directions for trajectories, equally spaced 
at angles of 27r/(/x —2). More detailed descriptions of these various 
situations will be found in [2, §3.2], 

If 9t is a finite oriented Riemann surface, a positive quadratic 
differential on 9Î is a quadratic differential on 9t such that Q(z)dz2 

is regular a t boundary points and Q(z)dz2^0 in terms of boundary 
uniformizers. Perhaps the most essential step in the proof of the 
General Coefficient Theorem is the analysis of the global structure of 
the trajectories of such a positive quadratic differential. The answer 
is contained in the Basic Structure Theorem. The present form of this 
result is given in [7], 

BASIC STRUCTURE THEOREM. Let $lbe a finite oriented Riemann sur­
face and Q(z)dz2 a positive quadratic differential on 9t where we exclude 
the following possibilities and all configurations obtained from them by 
conformai equivalence : 

I. 9? the z-sphere, Q(z)dz2 = dz2, 
I I . 9t the z-sphere, Q(z)dz2 = Keiadz2/z2, a real, K positive. 
I I I . $t a torus, Q(z)dz2 regular on 9t, 
Let A denote the union of all trajectories of Q(z)dz2 which have one 

limiting end point at a point of C and a second limiting end point at a 
point of CKJH. Then 

file:///x-/-2
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(i) 9Î—Î consists of a finite number of end, strip, ring, circle and 
density domains', 

(ii) each such domain is bounded by a finite number of trajectories 
together with the points at which the latter meet; every boundary com­
ponent of such a domain contains a point of C, except that a boundary 
component of a circle or ring domain may coincide with a boundary 
component of dt; for a strip domain the two boundary elements arising 
from points of H divide the boundary into two parts on each of which is a 
point of C; 

(iii) every pole of Q(z)dz2 of order m greater than two has a neighbor­
hood covered by the inner closure of the union of m — 2 end domains and 
a finite number {possibly zero) of strip domains-, 

(iv) every pole of Q(z)dz2 of order two has a neighborhood covered by 
the inner closure of the union of a finite number of strip domains or has 
a neighborhood contained in a circle domain. 

End and strip domains are mapped respectively on half-planes and 
horizontal strips by J{Q{z))l,2dz. Circle and ring domains are mapped 
respectively by exp(kf(Q(z))ll2dz) for suitable constants k on circles 
and circular rings. Density domains are swept out (apart from points 
of C) by trajectories each of which is everywhere dense in the domain. 

An admissible family of domains {A} relative to a positive quad­
ratic differential Q(z)dz2 on a finite oriented Riemann surface 9t is 
obtained by slitting 9Î along a finite number of trajectories of Q(z)dz2 

which either are closed or join two points of C and along a finite num­
ber of arcs on closures of trajectories in 9t — iT. An admissible family 
of functions {ƒ} associated with {A} then consists of a family of 
conformai mappings of the domains Ay comprising {A} onto nonover-
lapping domains in 9Î, leaving fixed all poles of Q{z)dz2 interior to 
these domains, normalized by the expansions (3) at poles of order 
greater than two and admitting an admissible homotopy F into the 
identity [2, p. 49] such that for a pole of order greater than two on 
the boundary of a strip domain the deformation degree of F a t tha t 
pole is zero. As usual d(F, P3) denotes the deformation degree of F 
at the pole Pj [2, p. 50]. 

In the statement of the General Coefficient Theorem the require­
ment that certain initial coefficients in the development (3) should 
vanish is necessary for the application of the technique used in the 
proof of the result. However, the corresponding restriction on the 
coefficients in the development (4) of the quadratic differential is 
made only to achieve formal simplicity in the expression (5) and 
can always be attained by a suitable choice of the local parameters 
used a t the various poles in question. 
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In the proof proper of the General Coefficient Theorem the first 
step is to show that it is sufficient to proceed on the assumption that 
Q(z)dz2 has no simple poles on 5ft. This is done by replacing Sft by a 
suitable covering surface. Then the double of dl — H becomes a com­
plete differential geometric surface with the metric induced by the 
Q-metric. 

The main part of the proof consists of drawing suitable curves 
around each point of H and regarding the set obtained by deleting 
these curves and their interiors from UJLi Ay. Then the areas of this 
set and the corresponding portion of U/Li fj(Aj) in the Q-metric are 
compared in two ways. On the one hand we obtain an inequality in 
one direction by studying the behaviour of the functions fj on the 
above curves. An inequality in the opposite direction is obtained by 
applying the method of the extremal metric in each of the various 
domains associated with the trajectory structure of Q(z)dz2. Combin­
ing these inequalities we obtain, after formal reduction, the inequal-
ity (5). 

The equality statements are proved by applying the usual equality 
treatment associated with the method of the extremal metric. 

The applications of the General Coefficient Theorem include all the 
standard results in the theory of univalent functions and these are 
presented in [2]. As an illustration we give here a simple one to show 
the working of the method. 

Let f ES. Then 

^ T 7 T , s l / « l s ^ . | . | - , ,o< ,< i , 
equality occurring on each side only for f{z) = z(l+e~idz)~2, 6 realf 

respectively for z = reid and —reid. 
In proving the lower bound we let f(z) = z(l + z)~2

f 

A = / ( £ ) ( E : \z\ <1 ) , * 0 ) be the inverse of ƒ on A, d = r(l+r)~2 and 
c—f(reiB)y 0 real. We take 5ft to be the w-sphere, the quadratic differ­
ential 

dw2 

Q(w)dw2 = ) 
w2(w — d) 

the admissible domain A given above and 

d 
g(w) =5 —f(eie$(w)) 

c 

an admissible function associated with A. 
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The quadratic differential has a double pole P\ a t the origin. The 
corresponding coefficients are 

a d ) = - dr\ a<« = c/de«. 

In this case the inequality (5) becomes 

dt{-<t-llog(c/dei9)} <> 0 
that is 

r 
I ƒ("")! ^ 

(i + ry 
In order for equality to occur by equality condition (iii) we must 

have 

c 
— f(ei9$(w)) s w; 
a 

then c — deid and setting €>(«/) = e~i6z we have f(z) = z(l+e~i6z)~2. 
In proving the upper bound we let ƒ, A, $ and 9Î be as above. We 

now set d= — y(l—r)~2, c=f(reie), 

dw2 

Q(w)dw2 = ; 
w2(ze> — d) 
d 

g(w) = —f( — eie$(w)) 
c 

the latter being an admissible function associated with A. 
The quadratic differential has a double pole P i a t the origin. The 

corresponding coefficients are 

au> = - d~\ <*<*> = - c/de«. 

In this case the inequality (5) becomes 

Vt{-f-1 log(-c/de«)} g 0 

that is 

r 
I ƒ(«**) I ^ 

(i - o* 
The same argument as before shows that equality can occur here 

only for the function/(s) = z(l — e~idz)~2. 
The other applications of the General Coefficient Theorem given in 

[2 ] may be classified essentially as region of values results and theo­
rems for families of univalent functions. Since the publication of that 
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work numerous other applications have been made. In [3] explicit 
formulas are given for the solution of problems involving weighted 
distortion in conformai mapping. Univalent functions with real coeffi­
cients are treated with considerable completeness in [4]. In particu­
lar, imposing a suitable normalization, there are determined the exact 
region covered by the image of the unit circle under every such func­
tion, the region of values of such functions at a point in the unit 
circle and bounds involving the derivatives of these functions. These 
ideas have also been used in a new and unified approach to treating 
the initial coefficients of normalized univalent functions defined either 
on the interior or on the exterior of the unit circle [5]. In this manner 
both known and new inequalities are obtained. In [9] the same prin­
ciples are applied to normalized univalent functions for which certain 
initial coefficients vanish. For these the earlier results are extended 
to apply to coefficients of any index. Finally in [ó] are to be found 
more sophisticated applications to families of univalent functions. 

We will indicate here in some detail one other application because 
it presents a somewhat different aspect. I t is the use of the General 
Coefficient Theorem to find a new lower bound for the schlicht Bloch 
constant 21. This constant is defined by the property that every func­
tion in 5 provides a mapping of \z\ < 1 onto a domain which contains 
some open circle of radius 21 while this is not so for any larger con­
stant. Landau proved by elementary means that in finding lower 
bounds for 21 we may restrict ourselves to functions satisfying 
(1 — J z\2) \f(z) J = 1. This inequality implies the conditions 

,42 = 0, 

1 1 1 

where ƒ (z) is to have about the origin the expansion 

ƒ(*) = z+ A2z*+ Asz* + 

Using the first two conditions Landau obtained a lower bound for 2Ï 
which is the best which can be obtained on the basis of this informa­
tion alone. 

Recently Reich obtained an improved lower bound using in addi­
tion the third condition. His essential step is to observe that the func­
tion 
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ƒ(*,*)-—ƒ««), o < * < i , 
t 

lies in S and satisfies the bound 

1/(0,0 I uM(t), | «I <1, 
where 

1 1 + t 

and has the expansion 

ƒ(*,*) = s + *M82
3 + . . . . 

Let 

(w - M)2(w* + • • • + 1) 
Q(w, Jlf, )̂rfw2 = dw2 

w*(w — p)(w — p~l) 
be a quadratic differential with real coefficients which is a positive 
quadratic differential on | w\ <M where M is a parameter susceptible 
of all real values greater than one, 0<p<M, and Q(w, M> p)dw2^0 
on the segment p<w<M. Further let f(z> M, p) lie in 5 and map 
\z\ <1 onto an admissible domain with respect to Q{w, M> p)dw2 

which does not contain any point of the segment p<w<M. Let 
f(zf M, p) have the expansion 

f(z,M,p) = z+ Az(M,p)z*+ . . . . 

Now suppose ƒ(z) omits the value 7 in \z\ <1 . Then ƒ(0, t) omits 
the value yt~l. If the value p can occur above for the choice M= M(t) 
and we had 

IT*-1 I £p, 

then for suitable real 0, e~ief(eiBz, t) would map | z\ <1 onto a domain 
omitting p. Then by a direct application of the General Coefficient 
Theorem we would obtain 

M{t2e2i'Az} <A*(M(t),p), 

the strict inequality being assured by a consideration of the equality 
conditions. This would imply 

- j fi < At{M{(), p). 
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Thus if it is possible to solve the equation 

- jt>= A*(M(t),p) 

for p = p(t) satisfying the above conditions we must have 

\yrl\ >p(t) 

or 

\y\ > tp(t). 

For every admissible value of t, tp(t) then provides a lower bound for 
31 and t may be chosen to make this bound most advantageous. 

This procedure is carried out with explicitly given mappings in the 
paper [lO] to obtain the numerical bound 2l>.5705. There is indi­
cated also the possibility of various small improvements. 
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