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Let k be a given ground field, let 9Fr denote the class of finite 
( = finitely generated) field extensions of k of tr.d. ( = transcendence 
degree) ^ r , and let n be the function defined on $ = (Jo 3v by: for any 
I G ^ , n(L) = t h e minimal number of generators of L/k. Classically it 
is known for suitable k that there exist purely transcendental exten­
sions L/k having tr.d. 2, and containing impure subextensions of 
tr.d. 2, a fact which shows that in general n is not monotone in JF 
for all k. The main result of this note establishes that these "counter­
examples to Lüroth's theorem" constitute the only barriers to the 
monotonicity of n (see Theorem 2 for a precise statement). In par­
ticular it is demonstrated that n is montone on SFi for arbitrary k, a 
result which appears new even when restricted to the subclass SFo of 
finite algebraic extensions of k. 

A result of independent (and possibly more general) interest, 
which is proved below, and which is essential to our proof of the 
statements above, is that dim 3D is montone on SF, where for any 
i G ^ , £>(!,) is the vector space over L of fe-derivations of L. The 
connection between n and dim 3D is given in the lemma. 

LEMMA. Let L/k be a finite extension of tr.d. r, let 5 = dim 3D(L), and 
let n — n{L). Then s^n^s+1; if s>r, then n = s.2 

PROOF. I t is known (e.g. [3, Theorem 41, p. 127]) that s is the 
smallest natural number3 such that there exist elements «i, • • • ,u9(EL 
such that L is separably algebraic over the field U~k(u\, • • • , « , ) . 
Then L = U(a) for some a£Z>, so that s^n^s+1. 

If 5>r , there exists uq in the set 5 = {ui, • • • , u8} such that uq is 
algebraically dependent over k on the complement of uq in S. For 
convenience renumber so that u9 is algebraic4 over the field 
T = k(ui, • • • , u8-i). A short argument shows that L= U(a) for some 
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aÇ^L which is separably algebraic over T. Thus L—T(u8, a) is gener­
ated over T by two elements one of which is separable over T. Then, 
by a classic result in field theory (cf. [2, §43, p. 138]), L = T(u!) for 
suitable ui £ L . Clearly then n = s. Q.E.D. 

If L/k is a finite extension, and L'/k a subextension, in general not 
every derivation of £>(L') can be extended to a derivation in £)(L). 
Nevertheless, the theorem below shows that dim 3D is a monotone 
function. 

THEOREM 1. Let L/k be a finite field extension, and let L'/k be any 
subextension. Then 5 = dim 3D(Z,)ès' = dim £>(!/)• 

PROOF. Let r = tr.d. L/k and r / =t r . d . L'/k. I t is easy to see that 
it suffices to consider only the case r = r'. For if r'<r, then there 
exists a field extension L" contained in L which is purely transcen­
dental over L' and such that tr.d. L"/k = r. Since L" /L' is a pure 
extension, every £>'£ £>(!/) is extendable to a derivation D" in £>(L"). 
I t is an easy exercise to show that if £ > / , • • • , D't are linearly inde­
pendent over L', then D", • * • , D{' are linearly independent over 
L"', so that dim £>(£/') ^s'. Hence it remains only to show that s*ts' 
when r = r'. An argument similar to the one just completed shows that 
sçïs' when L/L' is separable. The proof now proceeds by induction 
on the algebraic degree | L: L'\ of the extension L/L'. One can there­
fore assume the theorem for all extensions L" of k which contain L' 
and such that | L" : L' \ < \ L : L' \. Then clearly one can suppose that 
V is a maximal proper subfield of L. Since the separable case 
already has been decided, assume that k has characteristic p>0, 
and that L/L1 is inseparable. Then the maximality of 1/ shows that 
k(L*)QL'. By [1, p. 218] or [3, Theorem 41, p. 127], one has 

p' = | L:k(Lv) | , and p*' = | L':k(L'*) \ , 

so that the inclusions 

LDL'Oi k(JJ) 2 HL'**) 

together with the inequality 

\L:L'\ è \k(L»)\k(L'*)\ 

yield the desired inequality p'^p*', tha t is, s}£s'. Q.E.D. 

COROLLARY. Let L/k be a finite extension, and let L'/k be any subex­
tension. Then, if either L/k or L'/k is not separably generated, then 
n(L)^n(L'). 
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PROOF. Let s = dim £>(L), r = tr.d. L/k,n = n(L), and let s',r', and 
n' be the corresponding integers for L'/k. If L'/k is not separably 
generated, neither is L/fe, so that we can assume that L/k is not sepa­
rably generated in either case, that is, that s ^ r + 1 . Then n = s b y 
the lemma, whence n = s^sf by the theorem. If n ' = s', we are 
through, and if n ' ^ s ' , then n ' = s' + l = r ' + l by the lemma again. 
Since r^r', this latter equality yields 

n - s è r + 1 è r' + 1 = s' + 1 = n' , 

as desired. 
The corollary is surprising in view of the troublesomeness usually 

associated with nonseparably generated extensions. 
Before stating the last result, it is convenient to make the defini­

tion: k is an (r)-field in case no pure transcendental extension of k 
of tr.d. r contains an impure subextension of tr.d. r over k. Clearly if 
n is monotone in 9>, then k must be an (m)-field, m = 0, 1, • • • , r. 
Our next theorem establishes the converse. 

THEOREM 2. If k is an (r)-field, and if L/k is a finite extension of 
tr.d. r, then n=n{L) ^ n ' = n(L') for any subextension L'/k of L/k. 

PROOF. Let s, r,n> and their primes be defined as in the corollary. If 
s'>r', then n>n' by the corollary. If L'/k is purely transcendental, 
then trivially n^n\ Otherwise s' = r ' implies by the lemma that 
n ' = s' + l = r ' + l. Then, since k is an (r)-field, necessarily n ^ f + 1 
= r ' + l = n ' , if r = r'. If r > r ' , then clearly n ^ r ^ r ' + l = n ' . Q.E.D. 

By definition, any field is a (O)-field, and, by Lliroth's theorem, 
any field is a (l)-field. Thus, the theorem implies the corollary: 

COROLLARY. Let k be an arbitrary field. Then n is monotone in the 
class $Fi of finite extensions of tr.d. ^ 1 over k; in particular, n is mono­
tone in the class 9F0 of finite algebraic extensions of k. 

A consequence of Theorem 2 and the theorem of Castelnuovo-
Zariski (see [4]) is the following: 

COROLLARY. Let k be an algebraically closed field of characteristic 0. 
Then n is monotone in the class $2 of finite extensions of tr.d. ^ 2 over k. 

A possible value of Theorem 2 is that in order to show that a given 
field is not an (r)-field, it is possible to do this by showing that n is 
not monotone on its finite extensions of tr.d. r, that is, one need not 
restrict one's attention to the pure transcendental extensions of k. 
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