A NEW PROOF OF E. CARTAN’S THEOREM ON THE
TOPOLOGY OF SEMI-SIMPLE GROUPS

GEORGE DANIEL MOSTOW!

1. Introduction. E. Cartan has proved? that a connected semi-
simple Lie group is topologically the direct product of a compact
subgroup and a Euclidean space. Cartan first proved this theorem in
1927 by a reduction to special cases, and not until 1929 did he free
his proof from the consideration of special cases. As a result Cartan's
proof is diffused among several journals. Moreover, Cartan employs
in an essential way the theory of symmetric Riemannian spaces and
makes use of a result whose proof seems to be lacking (Ann. Ecole
Norm. loc. cit. p. 367, §20).

In this paper there will be given a more direct proof which elim-
inates the use of symmetric Riemannian spaces. The author wishes
to acknowledge his debt to Professor C. Chevalley who suggested in
an oral communication Lemma 1.4 below and to whom a proof of
Theorem 1, essentially the same as the one given here, was known.

2. Definitions and preliminaries. Let G be a semi-simple Lie
algebra over a field K of characteristic zero. Let ad g denote the linear
transformation x—[g, x], where x, gEG. By a Cartan subalgebra
is meant a subalgebra 3¢ of G maximal with respect to properties (1)
3¢ is abelian, that is, [3¢, 3¢] =0; and (2) HE ¢ implies ad H is semi-
simple, that is, its minimal equation has no repeated factor. It is a
theorem that a Cartan subalgebra is a maximal abelian subalgebra
(but not conversely).

Let G be a semi-simple Lie algebra, that is, G contains no abelian
ideal, and let 3¢ be any Cartan subalgebra. Assume that the base field
K is algebraically closed. A nonzero linear function « defined on 3¢ is
called a “root” if and only if there exists an X in G such that [H, X]
=a(H)X for all HE3. Any nonzero Y in G with this property is
said to “belong to a.”

The following is known:3

R1. If X, X; belong to «, 8 respectively, then [X., Xz] belongs
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to a6 or is zero according as a-+f is a root or not.
R2. The linear subspace of elements of G belonging to a root is
one-dimensional.
Notation. “X,” denotes an element belonging to the root a.
Clearly any collection {X a} with distinct subscripts are linearly
independent over K mod 3¢ and {3, X,|all roots a} spans G.
Suppose «, (B are roots. Define

k(a, B) = max 1(8 — vais a root, 0 < » < 1; », | integers),
k' (a, B) = max 1(8 + vais a root, 0 < » < 1; », l integers).

Define B(X, Y) =Trace (ad X ad Y). B is called the “fundamental
bilinear form.”

R3. B(X, Y) is nondegenerate on g’ and on 3¢. If a0,
B(X 4, X5)=0. B(H, X.)=0, if HE3C, for all roots a.

Define H, as the element of 3C such that B(H, H,) =a(H) for all
Hege.

R4.

k(ay 6) - k’(ay ﬁ)

6(Ha) = 2 a(Ha),

4
= 2 [k(a, B) — ¥ (e, B2,
a(Hq) B
[Xoy X-a] = B(Xay X—o)Ha.
For each root a select an X,. Define C,s by the relations
[Xa Xs] = CopXarp if a4+ B is a root,
Cap =0 if a4+ B8 is not a root.
R5. CapCou,p=—2"%'(a, B) [k(e, B)+1]a(H.).
R6. {X.|all roots @} may be so chosen that [Xa, X_o]=Ha. and

Cop=—C_qnp. Here B(Xo, X_o)=1 and Ca.p is real if K is the
complex numbers.

3. An algebraic theorem. We shall now deal exclusively with Lie
algebras over the real and complex number fields R and C respectively.

Let G be a Lie algebra over C. By a real form of G is meant a real
linear subspace which (1) is closed under the formation of brackets;
(2) spans G’; and (3) has a base which is linearly independent over C.
If Gis a Lie algebra over R, by the complexification of G is meant the
augmented linear space over C obtained by augmenting R to C.

Let G be a Lie algebra over C and let G be a real form. Consider
the real-linear transformation 6 of G (considered as a linear space



1949} THEOREM ON THE TOPOLOGY OF SEMI-SIMPLE GROUPS 971

over R):
0: X4 (—1)YV > X — (—1)Y2?Y, where X,Y € Gk

DEFINITION. 0 is called the “conjugation of G with respect to Gr.”

Note that Gz is the set of elements which are invariant under 6.

Note too that O([X+(—1)V2Y, U+(—1)"2V])=0(([X, U]
— [y, V) +(=0)vx([X, V]+[Y, UD)=[X, U]-[Y, V] —=(=1)v*
([x, M+[Y, VD=[X—(-1)0Y, U-(-D)"V] if X, 7, T,
VEGR. Thus §([X, ¥V )=[0(X), 6(Y)] if X, YEG.

DEFINITION. A compact form of a complex Lie algebra is a real
form on which the fundamental bilinear form is negative definite.

This section is devoted to the proof of the following theorem.

THEOREM 1. Let G be a semi-simple Lie algebra over R, let G¢ denote
its complexification, and let 0 denote the conjugation of Ge with respect
to G. Then 0 leaves invariant a compact real form Gx.

Notation. “X'” denotes 0(X), where X €Ge.

Clearly G¢ is a semi-simple Lie algebra. Assume that for each root o
an X, is so chosen as to make {X.|all roots @} satisfy the condition in
R6 above.

LemwmA 1.1. Let 3¢ be a Cartan subalgebra of G and let 3¢ denote the
complexification of 3¢. 3¢ is a Cartan subalgebra of Go. Moreover to
each root a there corresponds a root o' such that

(1) a'(H)=a(H) for HE3C,

(2) [H, X! =a'(H)X! for HEXCq,

3) if a, B, a+B are roots, then o’ +B' is a root and (a+B) =a’+p’.

ProoF. Inasmuch as {ad H [H Eﬂcc} is a commutative set of
linear transformations and is spanned by semi-simple transforma-
tions, and inasmuch as C is algebraically closed, all the elements of
{ad H|HE %} are semi-simple.

Suppose X +(—1)12Y, where X, YEG, is an element of a Cartan
subalgebra of G¢ which includes 3C¢. Then [H, X]=[H, Y]=0 for
HE3C. 3¢ being a maximal abelian subalgebra, X and ¥ must be in
3¢ so that X4 (—1)YV2Y&3Ce. It follows that 3¢ is a Cartan sub-
algebra of Go.

From

o([x, ¥]) = [x, V']
and
6(aX) = aX’ ifX,YE Ge
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we infer that
(7, x/] = a(@XxJ, if HE 5.
Lemma 1.1 follows from this.
LeEMMA 1.2. Cop= 1+ Co p.

PrOOF. —C2 3= —2"1%'(a, B) [k(e, B) +1]a(H,). From Lemma 1.1
it follows directly that

k(a, ) = k(a, ), ¥ (o, B) = F'(, B).

Since
4

oa(H )
it follows that Cas= £ Co p.
LEMMmA 1.3. Hy=H/.

= 253 [k(a, B) — ¥'(a, B)]*

ProoF. Since the fundamental bilinear form B is real on G,
B(X+(—1Dwv2y, U+(—1)Y2V) is the complex conjugate of
B(X—(—-1)Y, U—-(—-1)2V) if XYEG, that is, B(Z', W') is
the complex conjugate of B(Z, W) if Z, MEG¢. Hence B(H, HJ)
is the complex conjugate of B(H, H,) is the complex conjugate of
o(H)=o'(H) if H&3. Consequently B(H, HJ)=«a'(H) for all
HE3Ce and thus by definition H,=H .

Let u, be defined by the relation

Xd = woXo (all roots ).

Since Ca,p are real, uaug= * 1.5 if o, B, a+p are roots. Also #attar =1,
Ualh—q=1.

LemMA 1.4, The choice of {Xa|all roots a} can be modified without
changing the constants of structure Cqp so as to make l”al =1 for all
roots a.

PROOF.4 Let 7a=|ua| /2 and let V,=r.X, for all roots a. Then
ra?g=rayg and 7.7, =1 if o, B, @+ are roots. It follows immediately
that if we replace the {X a} by { Y,,} , then the constants of structure
are unchanged. Moreover

0(Ya) = 0¥ o

where Iva]=|ruuar;'1|=|ua]—1/2-]ua]-[uar|1’2=1. The lemma is

4 The proof given here is a simplification, pointed out by Dr. Harish-Chandra, of
the author’s proof.
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thus proved.
We assume now that G has a base {H.m Xal all roots a} such that
|ua| =1. Since #.u_o=1, it follows that #_q = #a.

Proor oF THEOREM 1.Let 3¢denote the real linearspace spanned by
Hal all roots a} and let Gk denote the real linear spaced spanned by
(—1)Y23Cy, 26X o —ZaX _o| all roots @, 2, assuming all complex values } .

Since Ca,s is real and C_q,—g= —Cap, it is readily seen that Gk is
closed under formation of brackets. Moreover {Hl, ..., Hy,
Xo—X_ o (D Xo+X_0) | all pairs of roots @ and —a; Hy, * « +, Hy
base for (— 1)V 2300} is a base for G. with respect to complex numbers.
It follows that Gk is a real form of G.. If ZE Gk, then Z=(—1)2H
4 a(8aX a—ZaX _a), Wwhere HE3C,. Thus

02) = — (= DVPH' + 2 BathaXar — ZothoX—ar)
= - (— l)lle, + Z (ZauaXa’ - za'ﬁaX—a')

where H' € 30,. Hence'gk isinvariant under the conjugation 6. Finally,
Gk is a compact real form. For if Z& Gk, then

Z=(=D"H+ D 2aXa — ZaX—a), H € 3¢,.

By R3, B(Z, Z)=—B(H, H)— Y« 2sZe. But
B(H, H)=Tr (ad H)(ad H)= >, a*(H) =0

with inequality holding only if H=0, since all roots assume real
values on 3o (cf. R4). Hence B(Z, Z) <0 if Z#0. Thus Gk is a com-
pact real form invariant under the conjugation 6.

4. The theorem. Let G be a connected real semi-simple Lie group,
G its Lie algebra, and let ad G denote its adjoint group, that is, the
Lie group of autmorphisms of G induced by the inner automorphisms
of G. Let G¢ denote the complexification of G, 8 the conjugation of
G with respect to G, Gk a real compact form of Ge which is invariant
under 6. ad G, being a subalgebra of the Lie algebra of all linear
transformations of G¢, determines a Lie subgroup G¢ of the Lie
group of all nonsingular linear transformations on Ge¢. To G there
corresponds a real linear subspace G*Cad G¢ under the correspon-
dence:

X€E GeoadX Ead Go.
To Gk there corresponds, under the correspondence

X E Grerad X € ad G,
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a real linear subspace GgCad Go¢. Regarding ad G as a Lie algebra
over the reals (that is, regard ad G as a linear space over the reals;
since the bracket operation satisfies the identities of a Lie algebra, ad
G is a real Lie algebra) G* and G are then subalgebras and to them
correspond subgroups G* and Gk of G§. Clearly G*~ad G topo-
logically as well as algebraically.

LemMa 2.1. G=GNGr+GN(—1)12Gk (directly), that is, G has
a base {X1, -+, Xp, (m1)V2Xppa, + - -, (—1)V2X,} with X;€EGx
(¢=1,2, -+ -, 7). Moreover, there is base (C for Gc relative to which the
matrix of ad X is real skew-symmetric for all X € Gx.

PRroOF. Since the real form Gk is invariant under 6 and since 62 is the
identity, there is a base {Xi, -+ +, X,, Xp41, + + +, Xr) of Gx such
that (X)) =X; (¢6=1, - - -, p) and (X)) =—-X; (G=p+1, - - -, 7).
Inasmuch as 0((—1)V2X;)=(—1)"2X; (j=p+1, : - -, r), one infers
that (—1)2X,€G (j=p+1,---, r). Clearly {Xy, - -, Xp;
(—=D)V2X py, + - -, (—1)V2X,} is a base for G, that is, G=GN\Gx
+GN(—1)V2Gx (directly).

The fundamental bilinear form being negative definite on the com-
pact real form Gk, a base C={Zy, - - -, Z.} can be selected for G¢
such that Z;&Gk (¢=1, - - -,7) and such that B(X, V) = — A
if X=21, x:Z:, Y= i, v:Z:;. By the Jacobian identities, ad
[X, Y]=ad Y ad X —ad X ad Y. Hence

B(ad X(Y), Z) + B(Y, ad X(2))
= Trace ad [X, Y] ad Z + Tracead ¥ ad [X, Z]
= Trace (ad X)(ad ¥ ad Z) — Trace (ad ¥ ad Z)(ad X)
= 0.

It follows that, relative to (%, the matrix of ad X is real skew-sym-
metric if X €Gk.

DEFINITION. Let U be a linear space over a field K and let € denote
the group of nonsingular linear transformations on V. Let (° denote a
base for U and T the matrix of TEE relative to . If HCE,
{Tu|TEH} is denoted by Ha. A subgroup G of € is called “alge-
braic relative to (°” if G is the intersection of an algebraic subvariety
of the space of matrices of all linear transformations of U with Ej.

It is to be noted that if a group is algebraic relative to one base for
U, then it is algebraic relative to any other base. Hence one can use
simply the term “algebraic.”

In our usage of algebraic groups, the field K will always be the
reals,
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DEFINITION. Let G be a Lie algebra over the complex numbers and
G a real form of G. The set of all automorphisms of G is called “aut
G.” The subset of aut G keeping G\ invariant is called “aut Go.”

Let T be a complex-linear transformation of Ge. If G is regarded
as a linear space over the reals, then the transformation T is a fortiori
real-linear.

LeEMMA 2.2. Let G be regarded as a linear space over the reals. Then
aut G¢, aut G, and aut Gk are algebraic groups.

PrOOF. Let D={Xy, - - -, X,, (—1)¥2Xy, - - -, (—1)¥2X,} be a
base for G¢ considered as a linear space over the reals. Let Xy«
denote (—1)¥2X; (k=1, - - -, 7). Let « denote the real-linear trans-

formation determined by the mapping
Xk g (— 1)1/2Xk,
(— DX — — X3 (k =1,.--,7).

Let Tu denote the matrix of T relative to D if T is a real-linear trans-
formation of Ge. Finally, let the real numbers Cj, be defined by [X;,

XJ']= Z%r-l sz ('ivjr k=1, ... ’ 27)'
Clearly T€aut G if and only if det T'540 and
1) Tuv=.T,
(2) [TX%’) TXJ]::T[XM XJ] (1"j=1’ ] 1’).

The first condition states that

T(OE) <OE)T
Y"—~£E0) \=E0/)™

where E is the rXr identity matrix. Condition (2) states that

2r E o« g 2r v & .
2. Capasaj = 3 Cijay (4,j=1,-+-1),
a,f=1 v=1
where (6) =Tu (p, ¢=1, + - -, 2r). Thus aut G is algebraic.
To prove that aut G is algebraic, assume Xy, + - -, X,} chosen

so as to be a subset of G. Then, clearly, T©aut G if and only if
det T'#0 and

(1) Tv=.T,

(2) [TXir TXJ] =T[X‘i’ XJ] ('I'yj=11 ] f)y

3) al=0if j>r.
Thus aut G'is algebraic. By a similar argument aut Gx may be proved
to be algebraic.

LeMMA 2.3. G*, Gg, GG are the components of the identity of aut G,
aut G, aut G, respectively.
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Proor. G, G*, G§ are all semi-simple Lie algebras. The lemma now
follows easily from the observations:

(1) If exp tX is an automorphism of G¢ (or G or Gk) for all real ¢,
then X is a derivation of Ge¢ (or G or Gk).

(2) All the derivations of a semi-simple Lie algebra are inner.

LEMMA 2.4. Let L be an algebraic Lie group containing s
=exp (—1)V2W, where the matrix of W relative to some base for the
underlying (real) linear space is skew-symmetric. Then exp (—1)YV%4W
&L for all real &.

Proor. Choose a base D for the underlying linear space relative to
which the matrix of W=diag {(—1)V2\, - - -, (-—1)1/2)\,.}, A; real.
Relative to O the matrix of s* is diag {e=®1, - - -, g=#M},

If f is a polynomial and f(e™*1, - - -, e~#s) =0 for all positive
integers k, then from the fact that Ay, - - -, N\, are real it can be in-
ferred that f(e, - - -, e™) =0 for all real £.

Inasmuch as L is algebraic, it is seen that s*&L for all positive
integers k implies that exp (—1)V%W&L for all real ¢.

As seen in Lemma 2.1, G=GNGx+GN(—1)"2Gg. Let =G
NGk, let F*={ad X|XEF}, let S =GN(—1)"2Gx, and let S*
=jad X IX €S }. Let F* denote the Lie subgroup of G§ correspond-
ing to the real Lie subalgebra 7*C G and let S*= {exp X| X €5*}.
Let ( be a base for the complex linear space G relative to which the
matrix of ad X is real skew-symmetric for all X EGx. Then Gg is a
subgroup of the orthogonal group relative to (°. Let F* denote the
subgroup of G* whose matrices relative to (° are real orthogonal.

Suppose now g&G*. Then g=f-s where s=exp (—1)Y2W, and
relative to (2 the matrices of f and W are respectively real orthogonal
and real skew-symmetric (cf. C. Chevalley, Lie groups, p. 15).

LEMMA 2.5. In the above decomposition for g, fEF* and sES*.

ProoF. Let 5 denote the conjugation of G with respect to Gk, let
T'x denote the matrix of T relative to 2 if T is a complex-linear trans-
formation of G, and let #*(T) denote the complex-linear transforma-
tion of G¢ with matrix Ty. Since G=GNGr+GN(—1)"2Gk,
7(@) = G. Moreover (X, Y]) = [7(X), 9(¥)] implies ad n(X)(n(¥))
=n(ad X(Y)) for X, YEGec. On the other hand n*(ad X)(n(Y))
=n(ad X(Y)). It follows that n*(ad X)=ad 9(X) for X&G¢ and
that n*(G*) = G* where G*={ad X|X&G}. Since G* consists of
finite products of the type exp Xi-exp X,:--exp X, where
Xy, -+, X,€G* and since n*(exp Xicexp Xp-:-exp X,)
=exp n*(X1) - - - exp p*(X,) it is seen that 9*(G*) =G*.
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Consider now the relation g=f-s. Then, 9*(g) =9*(f) -7*(s) =f-s~.
Hence s*=(9*(g))"1g is in G*; that is, exp 2(—1)12WEG*.

Suppose = {Zl, cee, Z,}.Let C= {Z;, e 2 (mD12Zy .
(—1)v2Z,}. Regard now G'c as a linear space over the reals and denote
by T, the matrixrelative to (%’ of areal-linear transformation T on Gb.
Since the coefficients of Wi are real, W, is the 27 X2r matrix

(" )
0 Wu/

Wi 0 —Wx 0

(30 L)

0 ‘Wn 0 —Wx
Consequently W, is a real skew-symmetric matrix. Applying Lemma
2.4, it is seen that exp (—1)%-2W belongs to aut G for all real ¢
and thus, by Lemma 2.3, to G*. It follows that (—1)2W& G*. Since
Wy is real, WEGE and hence (—1)'?WeES*=G*N(—1)"2Gx.
Consequently s€S* and f, being in G*, must be in F*. Proof of
Lemma 2.5 is now complete.

Let S* be endowed with its inner topology relative to G* (and F*
with its topology qua Lie group).

LEMMA 2.6. G* = F* X.S* topologically. F* is a compact Lie subgroup
and S* is topologically a Euclidean space.

Proor. Consider the one-to-one mapping g—(f, s) defined by:
g=f-s where fEF*, s&S* of G* onto the topological direct product
F*x S*,

It follows directly from Lemmas 2.2 and 2.3 and the fact that an
algebraic Lie group is closed that G* and G§ are closed in the group of
all regular real-linear transformations on G¢ and a fortiori in the
group of all regular complex-linear transformations on Go. F*, the
set of all real orthogonal (relative to the base (°) complex-linear
transformations in G*, is clearly closed.

The mapping gu—(fum, su) is the restriction of the well known®
one-to-one bicontinuous mapping of the group of all regular complex-
linear transformations of G¢ onto the topological direct product of
the group of unitary matrices and the set of positive definite hermitian
matrices (relative to (°). Furthermore, the exponential mapping of
S * onto .S* is the restriction to § * of the well known homeomorphism?®
of the hermitian matrices onto the positive definite hermitian
matrices. Since G* and F* are closed, their topologies as Lie groups

5 Cf. C. Chevalley, Lie groups, Princeton University Press, 1946, p. 16.
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and the given topology of S* are equivalent to their inner topologies
relative to the group of all regular complex-linear transformations of
Ge. It follows that S* is topologically a Euclidean space and that the
mapping g—f-s is a homeomorphism of G* onto F* XS*.

Since G* is connected, F* is connected. But the Lie algebra of F* is
clearly G*N\G¥, the Lie algebra of the Lie subgroup F*. Conse-
quently F*= F* and F* is closed in the full complex-linear group on
Ge. Inasmuch as {Tx|TE€F*} is a subgroup of the real orthogonal
group (relative to base (°), F* is compact. Proof of the lemma is now
complete.

Let D denote the center of the semi-simple group G. D is discrete
and G*=G/D topologically as well as algebraically, under the natural
mapping {:

gEG—automorphism of G¢ induced by T, where T, is the
inner automorphism x—g~lxg of G. Let S={exp X|X€ES, §
= gﬂ(—l)”zgx}, and let F denote the connected Lie subgroup of
G determined by ¥=GNGk.

¢ (exp X) =exp ad Xif X €G. Inasmuch as the mappings X—ad X
and ad X—exp ad X are one-to-one if X €S, the mapping X—exp X
is one-to-one if X &S . Give S the topology which makes the mapping
X—exp X of S (endowed with its natural Euclidean topology) onto
S a homeomorphism and F its topology qua Lie group. Clearly ¢
maps S homeomorphically onto S*.

LeEMMA 2.7. G=F XS topologically.

ProOOF. Let F={-1(F*). The homogeneous space G/F is homeo-
morphic to G*/F*=.S* a simply connected space. It follows that F
is connected, F=F, and DCF.

Let g&G. Since {(g) =f*-s* where fEF* and s&S* g=d-f' s
where f'EF, s&.S, dED. But DCF; hence g=f-s where fEF, s&S.

Suppose that fi-s1=f2-s2 where fi, foEF and s;, s:&S. Then
$(f)E(s1) = (f2)§ (s2) implies that {(s1) ={(s2). Since { is one-to-one on
S, s1=s2 and hence fi=f,, that is, the mapping

¢: (f,9)—g

defined by g=f-s is a one-to-one mapping of FX.S onto G.

We now prove that ¢ is a homeomorphism. Inasmuch as the
exponential mapping of a Lie algebra (endowed with its natural
Euclidean topology) into a Lie group is a continuous mapping, and
inasmuch as group multiplication is continuous, the mapping ¢ is
continuous.

Let U, V be connected neighborhoods in F, .S respectively. Since {
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is a homeomorphism on S, {(V) is a connected open set of S*. Since F
and F* are closed subgroups of G and G* respectively, it follows that
their topologies qua Lie groups are equivalent to their inner topologies
relative to G and G* respectively. Consequently {(U) is a connected
open set of F* and {(¢(U X V)) is a connected open set of G*.

(U X V) =¢(U-V) = ¢(0)- (V).

Hence by selecting U and V sufficiently small, {(¢(U X V)) can be
made arbitrarily small. Since G is a covering space of G* under ¢,
¢~1(NV) is a union of disjoint connected open sets if NV is a sufficiently
small connected open set. Inasmuch as ¢(UX V) is connected, it is a
(connected) open set of G if U and V are sufficiently small. The
mapping ¢ is therefore open.

LeEMMA 2.8. J*=L*®A* (directly) where L* and A* are respec-
tively semi-simple and abelian ideals of F*. Let L*, A* be the Lie sub-
groups of F* determined by L*, A* respectively. Then L* and A* are
compact.

Proor. Consider the adjoint group of F acting on 7. Since F* is
compact, the adjoint group of F (a homomorphic image of F¥) is
compact and is therefore completely reducible, that is, if the linear
transformations of the adjoint group keep a subspace invariant, they
keep invariant a complementary subspace. It follows that ¥ is the
direct union of minimal ideals. Consequently ¥=.L @4 (directly)
where . and <4 are respectively semi-simple and abelian ideals of .
Let .L*, «A4*, be the images of ., <4 respectively under the adjoint
representation of G. Then J*=L*®A* (directly).

Since .* contains no abelian ideals, «4* can clearly be character-
ized as the maximum abelian ideal of ¥*. It follows that 4* is the
maximum connected normal abelian Lie subgroup of F*. Since 4%,
the topological closure of A%, is a connected normal abelian Lie
subgroup, 4* =A*, that is, A* is a closed subgroup of F* and is thus
compact.

Consider now F*/A*, This is a compact Lie group whose Lie
algebra is isomorphic to F*/e4* =L*. Since there is a compact Lie
group with Lie algebra isomorphic to .£*, by a theorem of Weyl® any
Lie group whose Lie algebra is isomorphic to .* is compact. Conse-
quently L* is compact.

THEOREM 2. G =K XE topologically, where K is a maximal compact
subgroup and E is topologically a Euclidean space.

¢ H. Weyl, loc. cit. p. 170.
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PROOF. As was seen in the proof of Lemma 8, ¥ =.L @A where . is
semi-simple and <4 abelian. Let L, A be the Lie subgroups of F cor-
responding to .(, <4 respectively, {(L) =L* and {(4)=A4*. A, being
the component of the identity of the closed subgroup {~1(4), is closed.

Since L2>~.* and L* is compact, by Weyl’s theorem L is compact.

Let T X V be a decomposition of the connected abelian Lie group 4
into the direct product of a toroidal group T and a vector group V.
Vis closed in 4 and hence in F.

Set K=LT, that is, K= {ltllEL, tET}. K is a compact normal
subgroup of F and F=KV. K and V being closed subgroups of F,
KNV is both compact and a subgroup of V; it follows that K and V
intersect in only the identity of F. Inasmuch as K and V are closed
normal subgroups of F, F=K XV topologically as well as alge-
braically. Finally, let E=7V-S. Clearly E is topologically the direct
product of two Euclidean spaces and is hence itself Euclidean. It
may now be asserted that G=K XE topologically.
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