INNER DERIVATIONS OF NON-ASSOCIATIVE ALGEBRAS
R. D. SCHAFER

In this note we propose a definition of inner derivation for non-
associative algebras. This definition coincides with the usual one for
Lie algebras, and for associative algebras with no absolute right (left)
divisor of zero. It is well known that all derivations of semi-simple
associative or Lie algebras over a field of characteristic zero are
inner.

Recent correspondence with N. Jacobson has revealed that a
number of the ideas in this note duplicate some of his current re-
searches.! In particular, he has shown that every derivation of a semi-
simple non-associative algebra (that is, direct sum of simple algebras)
with a unity quantity over a field of characteristic zero is inner in
this sense.

1. Preliminaries. A derivation of a non-associative algebra U
over a field § is a linear transformation D on ¥ satisfying

(1) (xy)D = x(yD) + («D)y

for all %, y in . It is known [2]2 that the set D of all derivations of
9 is a Lie algebra over § if multiplication in D is defined by

(2) [Dy, D] = DD, — D,D;

where D;D; is the ordinary (associative) multiplication of linear
transformations. D is called the derivation algebra of .
If we write Ry for the right multiplication

x— xy = xR, forall xin 9

and L, for the left multiplication

y—axy = yL, forall yin ¥,
the definition (1) is seen to be equivalent to either one of
3) [R,, D] = Ryp forall yin &
or
4) [L., D] = L.p for all x in 2.
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2 Numbers in brackets refer to the references cited at the end of the paper.
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We denote by R(H) (or L(X)) the set of all right (or left) multiplica-
tions of . Then (3) and (4) imply

(5) [RQ), D] = RA),  [L@), D] = L),

where by [S, T] we mean the linear set spanned by all [S, T] for
Sin &, T in €. Anti-commutativity

(6) [s, 7] = — [T, 5]

and the Jacobi identity

M [ls, 7], U] + [[T, U] s+ [[U, 5], T] = 0
for linear transformations on ¥ imply

(® 2] = [ &)

©) [[& 2] u] = [[T u], ] + [[u, &], T]

for linear sets &, T, U of linear transformations on .3

A non-associative algebra ¥ which is not the zero algebra of
dimension one is called simple in case its only ideals are {0} and 9.
A semi-simple non-associative algebra ¥ is the direct sum A=Y,
@ - ®Y, of simple components ;.

The center 8 of a non-associative algebra ¥ consists of all elements
¢ in A such that

(10) L, = R., RyRc = -RcRu = Rcﬂ

for all y in A. The center of U is characteristic; that is, 3D < 8. For
L.p=[L., D]=[R., D]=R.p, while R,R.p=[R,R., D]—[Ry, DR,
= [Rchn D] —R, [Rzn D] = [Rc» D]Ry =RcpRy =R (eyyp — Reyp) = RicDyy-

Also the simple components of a semi-simple algebra are char-
acteristic, for %% =9; implies that x in %; may be written in the form
x= > y;z;for y;,2;in As. Then xD = 3 (y;2,)D = 2_3(:D) + 2 (v:D)z;
is in ¥, since U; is an ideal of A.

The center 8 of a simple non-associative algebra ¥ is either {0} or
a field. If % contains a unity element 1, then 85 {0}, and % may be
regarded as an algebra over 8. As such, it is central simple (that is,
simple for all scalar extensions).

2. Inner derivations. Let I be a linear set of transformations on
9, and write

11) My=M,, D= [M, DMiu], =2,3,---

3 Throughout this note we use the notation 8+ € for the sum of the linear sets B,
€; we do not mean necessarily that 8MN\E= {0}.
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Then the set =P+ ¢ - - +IM;+ - - - is the smallest Lie algebra
containing M. For, when we prove

(12) [%;‘, 93?;] é mﬂ-iy ir j = ly 2y tt

we have proved that 2 is a Lie algebra. By virtue of (8) it is sufficient
to prove (12) for j=1. If =1 we have (12) by definition. We assume
therefore that [y, ] =<Miy: for any 1=k and for £<i. Then
[, ;1= ([P, D], MG < [[Dica, ]G], D]+ ([, D], Mis]
= [Mijr, D]+ [Msr, Mia] SMiys by (9). Now any Lie algebra
containing I contains all M; and therefore &, so L is the smallest
Lie algebra containing .

The role of € is analogous to that of the enveloping algebra of M,
which is the smallest associative algebra containing M. Clearly &
is contained in the enveloping algebra of .

Let M be the set R(A)+L(A) spanned by the right and left
multiplications of %. Then we call ® the Lie transformation algebra of
. L is contained in the so-called transformation algebra T'(U), the en-
veloping algebra of the right and left multiplications and the identity
I

DEFINITION. We call a derivation D of a non-associative algebra
A inner in case D is in the Lie transformation algebra & of 2.

We recall that an algebra ¥ is associative in case

(13) (z9)z = x(y2) for x, v, zin Y.
It is easy to see that (13) is equivalent to any one of

(14) L,,=L,L,, [L., R.]=0, R,R,=R,.

Let

(15) D=Rs—La for d in ¥;

then D is a derivation of % by (3) and (14) since [R,, Ra—L4]
= [Ry, R4] =Rya_a,. Derivations of this form have always been called
inner derivations of the associative algebra 9. They are inner deriva-
tions by our definition.

THEOREM 1. The Lie transformation algebra of an associative algebra
A is
(16) L= R®) + LQ).

If A has no absolute right (left) divisor of zero, then a derivation D of
U is inner if and only if D has the form (15).

Any element of R(A)+L(A) has the form R,+L,. Then (14)
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implies that [Rz1+Lyv Rzz+Lu2] = [va Rzz]+ [Ltm Lﬂ:] =Rizy.25
4+ Liyyyy in R(A)+L(A), so that R(A)+L(A) is itself a Lie algebra,
and (16) holds. Let R4+ Ly in ® be a derivation of . Since (15) is a
derivation, so is (Rs+Ls)—(Rs—Lg)=Lsra. From (1) we have
(f+dxy=x(f+d)y+(f+d)xy, or x(f+d)y=xRs+ay=0 for all x, y
in Y. Hence R(;1ay=0. Assuming there is no absolute right divisor
of zero in ¥, we have (f+d)y=yL;a=0for all y, or Ly14=0, Ry+L;
=R4s— Ly A similar argument may be made in case ¥ contains no
absolute left divisor of zero.
The identities

(17) xy = —yx, (23)z+ (yz)2 + (z2)y = 0

define a Lie algebra. These together are equivalent to

(18) L,=—R., [R,R]=Ry.

Then (3) and (18) imply that

19) D = R4 forany din %

is a derivation of U ; this has always been called an inner derivation of
a Lie algebra. It is also inner by our definition.

THEOREM 2. The Lie transformation algebra of a Lie algebra U is
(20) { = R).
A derivation D of N is inner if and only if D has the form (19).

For L(A)=R(A) and [R(A), R(A)]SR(A) by (18).

THEOREM 3. The set 3=ND of inner derivations of a non-associa-
tive algebra N is an ideal in the derivation algebra D.

If Jis in & and D in ®, we have [J, D] in ©. Moreover, J may be
written in the form J= ) M; ,M;in ;. Now

@1 [, D] = My, i=1,2---

The case =1 of (21) is given by (5). We assume (21) in a proof by
induction. Since M;;; is a sum of elements of the form [Mi, M;],
we have [M.;1, D] a sum of elements of the form [[Mi, M.], D]
=—[[a, D], ] [[D, M), M) in [D, D]+ [, M) =M.
Then [J, D]isin D [P, D]< D Mi=¢, and [J, D]EF=2ND.

COROLLARY. If D is simple and I {0}, then I=D; that is, all the
derivations of U are inner.

THEOREM 4. Let A=A ® - - - ®U, be a semi-simple non-associa-
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tive algebra, ; simple. All the derivations of U are inner if and only if
all the derivations of U; are inner (=1, 2, - - -, s).

Since Y; is characteristic, any derivation D of ¥ induces a deriva-
tion D™ on 9;, and

(22) D=Dy+ .-+ D, D; derivations of ¥,

where the restriction of D; to %; is DD and ;D= {0} for j=1.
Conversely, if D® is a derivation of ¥;, the transformation D; on ¥,
whose restriction to ¥; is D® and for which A;D;= {0} if 744, is a
derivation of ¥; then so is the sum (22). Since the ¥U; are pairwise
orthogonal ideals, a similar decomposition of right and left multiplica-
tions is possible, and any element T of the Lie transformation algebra
€ of A may be written as

(23) T=Ti+ -+ T,

where %,;T:= {0} for j5%i, and the restriction of T; to U; is an ele-
ment T'® of the Lie transformation algebra of ;. Conversely if T
is an element of the Lie transformation algebra of ¥;, define the
transformation T of ¥ whose restriction to %; is T® and for which
A, T:= {0} if j544; then T;is in €, and so is the sum (23). Then D=T
if and only if DWW =T® (4=1,2, -+ - 5).

3. Alternative algebras. An alternative algebra ¥ is a non-associa-
tive algebra in which

(24) %2y = x(xy), yx? = (yx)x forall x, yin 9.

All associative algebras are alternative. Moreover, all simple alterna-
tive algebras are associative, except for algebras which are Cayley-
Dickson algebras over their centers [4]. Cayley-Dickson algebras are
algebras € of dimension 8 formed from a (generalized) quaternion
algebra Q as follows: the elements of €=Q+4vQ are ¢1+vg,, ¢; in
£; multiplication in € is defined by

(25) (g1 + v92)(gs + v94) = (9193 + ¥q4d2) + v(q194 + gsg2)

where y50 in § and §=1(¢)1 —gq for ¢ in Q with ¢?—#(¢)g+nr(q)1=0.

In an alternative algebra % the “associator” [xi, xs, %3] = (%122)%;
—x;(xax5) “alternates”; that is, [x1, %2, x3]=¢[x;, %y %3] for any
permutation 11, 42, 43 of 1, 2, 3, where € is 1 in case the permutation is
even, —1 in case it is odd. Equivalently,

R,,— R.R.=R,R; — R, =L,; — L,L, = L.L,— L,

(26) = [L., R.] = [R., L.].
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Now (26) implies that

(27) [R. R.] = Rizsy — 2[L., R,)

and

(28) [L,, Lz] = — Lz, — 2[L,, Rz],

where by [x, z] we mean xz—2zx in . Also

(29) Dy =3[L., L.] + 2R,y + Lz

is a derivation of ¥ for any x, zin U, for it is easy to see from (26) that
(30) [Ly, L2 L.]] = Lytze.za14uta.s

while (28) gives [Ly, 2Rz, +Liz.q] = — Ly 12,21 With (27) and (28)
it is easy to write several variants of (29); indeed, if the character-
istic of § is not two, we obtain the symmetrical expression

(31) D= [Lz; Lz] + [L:c, Rz] + [Rzy Rz]
for D=D;/2 in (29). Then the sum
(32) D=2 ([Ley Le] + [Lay Rl + [Ray Reg))

is also a derivation of ¥ for x;, z; in N.

THEOREM 5. The Lie transformation algebra of an alternative algebra
A over § of characteristic not two is

(33) 2 = RQ) + L) + [LQD), RA)].

Let 9H=RQ)+L) and L=+ [L(A), RA)]. Then D
=[P, PH]=% by (27) and (28). Assume M.1=R. Then N
= [, Dia] < [y, D+ [LY), RA) 1] =D+ [0, [L(), REA]].
Since the characteristic of § is not two, it follows from (28) and (30)
that [L,, [L., R.]] is in . Similarly it may be shown that
[Ry, [L., R.]]is in 2. Hence IMM: <9 for all 4, 8 L. But Lo < M+ N,
so €=%. It is clear from (27) and (28) that we may also write

=R +LE) + [L@), L) ] =R +L) + [R), REA)].

THEOREM 6. AUl derivations of a Cayley-Dickson algebra € over a
field of characteristic zero are tnner. They have the form (32).t

4 Added in proof: Let U be an alternative algebra with unity element over § of
characteristic not two or three. Then (using @=R()+L(¥A)+ [L(X), L(¥)] and (29))
one may prove that a derivation D of ¥ is inner if and only if D is the sum of two
derivations: one of the form (32), the other of the form (15) with d satisfying
[, %, y]=0 for all x, ¥ in %. For a Cayley-Dickson algebra § the second derivation in
the sum is zero,
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The set of inner derivations of € is not {0}, for it is easy to choose
a pair of quaternions x, z in Q such that [z, x]0. Then, applying D
in (31) to v in (25), we obtain vD =v|z, Z]+v[z, &]+v[z, x]=v[z, x]
since Z+2=1(2)1. Then D#0. But D is inner and, by the corollary to
Theorem 3, all derivations of € are inner, for it is known [3, p. 780]
that the derivation algebra D of € is simple (the exceptional simple
Lie algebra of dimension 14). To see that the set o of derivations
(32) is an ideal in D, it is sufficient to show that for D; in (29) we
have [Di, D'] in D, for any derivation D’ of €. But this is an easy
consequence of the Jacobi identity and the fact that [x, z]D’
=[x, 2D']+[xD’, 2]. Since Do {0}, Do=D.

THEOREM 7. All derivations of a semi-simple aliernative algebra A
over a field of characteristic zero are inner.

Since ¥ is the direct sum of simple components which are either
associative or Cayley-Dickson algebras over their centers, and since
it is well known that derivations of the associative components are
inner, this theorem is reduced by Theorem 4 to the case where ¥ is a
Cayley-Dickson algebra € over its center 8. But, since the char-
acteristic is zero, the derivations of % map the field 3 upon {0};
moreover, if O is the derivation algebra of €, then Dz is the derivation
algebra of . Then by Theorem 6 all derivations of ¥ are intder.

4. Jordan algebras. A Jordan algebra is a commutative algebra
A in which

(34) x2(xy) = x(x?y) for all x, yin 9.

A. A. Albert has shown [1, equation (8), p. 550] thatin a Jordan alge-
bra % over § of characteristic not two the identity

(35) [Rm [Rz, Rz]] = R(zpyz—z(y2)

holds. That is, [R., R.] is a derivation of U for any x, z in ¥. So is the
sum

(36) D = 3 [R., Ry, for x;, z; in .

THEOREM 8. The Lie transformation algebra of a Jordan algebra A
over a field of characteristic not two is

@7 2= RQA) + [RQ), RA)].

If A has a unity element 1, then a derivation D of U is inner if and only
if D has the form (36).
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Since ¥ is commutative, 1= R(Y). Any element of D= [R(Y),
[R(Y), R(A)]] is a sum of elements of the form (35), so M <Dk.
Then [Da, Me] S D= [P, D] <[Py, Du]=D by (12). Hence
P+M: is a Lie algebra, L=Du+DMa=R(A)+ [R(A), R(A)]. Let
D=R,+ > i [Rz; R.,] be an inner derivation. Since 1D =0, we have
y=0.

We refer the reader to the proof of the following theorem by N.
Jacobson in the paper mentioned in footnote 1.

THEOREM 9 (JACOBSON). All derivations of a semi-simple Jordan
algebra N over a field of characteristic zero are inner; they have the form
(36).
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