A REFINEMENT OF PELLET'S THEOREM

MORRIS MARDEN

1. **Introduction.** S. Lipka¹ has recently announced a refinement of the classic theorem of Cauchy that all the zeros of the polynomial

$$(1.1) f(z) = a_0 + a_1 z + \cdots + a_n z^n, a_n \neq 0,$$

lie in the circle $|z| \le r$, where r is the positive root of the real equation

$$(1.2) F_n(z) = |a_0| + |a_1|z + \cdots + |a_{n-1}|z^{n-1} - |a_n|z^n = 0.$$

Lipka's refinement consists in replacing the circle |z| = r by a curve $G(r_0, r; n, \alpha_0)$ which bounds a gear-wheel region. This region is formed by deleting from the circle $|z| \le r$ the points common to the annular ring $0 < r_0 < |z| \le r$ and to the n sectors

(1.3)
$$\frac{\alpha_0}{n} - \frac{\pi}{2n} + \frac{2\pi_k}{n} \le \arg z \le \frac{\alpha_0}{n} + \frac{\pi}{2n} + \frac{2\pi k}{n},$$

 $k=0, 1, \dots, n-1$. In these formulas r_0 is the positive root of the equation

(1.4)
$$\Phi_n(z) = |a_1| + |a_2|z + \cdots + |a_{n-1}|z^{n-2} - |a_n|z^{n-1} = 0$$

and $\alpha_0 = \arg a_0/a_n$.

Now, the Cauchy theorem is but a special case of the following theorem due to Pellet.²

PELLET'S THEOREM. If the polynomial

$$(1.5) f(z) = a_0 + a_1 z + \cdots + a_p z^p + \cdots + a_n z^n, a_p \neq 0,$$

is such that the real polynomial

(1.6)
$$F_{p}(z) = |a_{0}| + |a_{1}|z + \cdots + |a_{p-1}|z^{p-1} - |a_{p}|z^{p} + |a_{p+1}|z^{p+1} + \cdots + |a_{n}|z^{n}$$

Presented to the Society, September 3, 1947; received by the editors August 22, 1947.

¹ S. Lipka, Monatshefte für Mathematik und Physik vol. 50 (1944) pp. 209–221.

² A. Pellet, Bull. Sci. Math. vol. 5 (1881) pp. 393-395. The converse to this theorem was discussed by J. L. Walsh, Ann. of Math. vol. 26 (1924-1925) pp. 59-64 and A. Ostrowski, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 742-746. See also M. Marden, The geometry of the zeros of a polynomial in a complex variable, chap. 7, to be published as a volume of Mathematical Surveys.

has two positive zeros r and R with r < R, then f(z) has exactly p zeros in or on the circle $|z| \le r$ and no zeros in the annular ring r < |z| < R.

It is Pellet's theorem which we propose to refine as indicated in the following theorem.

THEOREM 1.1. Under the hypotheses of Pellet's Theorem the polynomial

(1.7)
$$\Phi_{p}(z) = |a_{1}| + |a_{2}|z + \cdots + |a_{p-1}|z^{p-2} - |a_{p}|z^{p-1} + |a_{p+1}|z^{p} + \cdots + |a_{n}|z^{n-1}$$

has also two positive zeros r_0 and R_0 with

$$(1.8) r_0 < r < R < R_0.$$

Furthermore, f(z) has exactly p zeros in or on the curve $G(r_0, r; p, \alpha_0)$ where $\alpha_0 = \arg a_0/a_p$ and no zeros between the curves $G(r_0, r; p, \alpha_0)$ and $G(R, R_0; p, \alpha_0 + \pi)$.

Theorem 1.1 will be proved in §2 and applied in §3 to the refinement of various known bounds on the zeros of a polynomial. Finally, the theorem will be generalized in §4, first by replacing the polynomial $\Phi_p(z)$ by the polynomial $\Phi_k(z) = F_p(z) - |a_k| z^k$ and secondly by replacing the polynomial f(z) by a power series.

2. Proof of Theorem 1.1. Let us first prove the existence of the roots r_0 and R_0 of equation $\Phi_p(z) = 0$ and the validity of inequality (1.8). Since r and R are the positive zeros of $F_p(z)$, it follows from (1.6) that, for any sufficiently small positive number ϵ ,

$$(2.1) F_p(\rho) < 0 \text{if } r + \epsilon \le \rho \le R - \epsilon.$$

In view of the equation

$$(2.2) F_p(z) = |a_0| + z\Phi_p(z),$$

the zeros r and R of $F_p(z)$ satisfy the relations

$$(2.3) \Phi_p(r) = - |a_0|/r < 0, \Phi_p(R) = - |a_0|/R < 0.$$

When taken together with the facts that

$$(2.4) \Phi_p(0) > 0, \Phi_p(\infty) > 0,$$

the relations (2.3) imply the existence of two positive zeros r_0 and R_0 of $\Phi_p(z)$ and the validity of inequality (1.8), as well as the inequality

$$\Phi_{\nu}(\rho) < 0$$

for $r_0 + \epsilon \le \rho \le R_0 - \epsilon$.

Let us now set $z = \rho e^{i\theta}$ and

(2.6)
$$a_k/a_p = A_k e^{\alpha_k i}, \qquad k = 0, 1, \dots, n.$$

In this notation, the real part of $\rho^p f(z)/a_p z^p$ is

(2.
$$\operatorname{Re}\left[\rho^{p}f(z)/a_{p}z^{p}\right] = \sum_{i=0}^{p-1} A_{i}\rho^{i} \cos\left[(p-j)\theta - \alpha_{i}\right] + \rho^{p} + \sum_{i=p+1}^{n} A_{i}\rho^{i} \cos\left[(j-p)\theta + \alpha_{i}\right]$$

and the inequalities (2.1) and (2.5) become

$$(2.8) \quad \rho^{p} > A_{0} + A_{1}\rho + \cdots + A_{p-1}\rho^{p-1} + A_{p+1}\rho^{p+1} + \cdots + A_{n}\rho^{n}$$

for $r+\epsilon \leq \rho \leq R-\epsilon$, and

(2.9)
$$\rho^p > A_1 \rho + A_2 \rho^2 + \dots + A_{p-1} \rho^{p-1} + A_{p+1} \rho^{p+1} + \dots + A_n \rho^n$$

for $r_0 + \epsilon \le \rho \le R_0 - \epsilon$.

On substituting from inequality (2.8) into (2.7), we find

$$\operatorname{Re} (\rho^{p} f(z) / a_{p} z^{p}) > \sum_{j=0}^{p-1} A_{j} \rho^{j} \left\{ \cos \left[(p-j)\theta - \alpha_{j} \right] + 1 \right\}$$

$$+ \sum_{j=p-1}^{n} A_{j} \rho^{j} \left\{ \cos \left[(j-p)\theta + \alpha_{j} \right] + 1 \right\} \ge 0$$

for $r+\epsilon \leq \rho \leq R-\epsilon$. On substituting from inequality (2.9) into (2.7), we find

$$\operatorname{Re} (\rho^{p} f(z) / a_{p} z^{p}) > A_{0} \cos (p\theta - \alpha_{0})$$

$$+ \sum_{j=1}^{p-1} A_{j} \rho^{j} \{ \cos [(p-j)\theta - \alpha_{j}] + 1 \}$$

$$+ \sum_{j=n-1}^{n} A_{j} \rho^{j} \{ \cos [(j-p)\theta + \alpha_{j}] + 1 \}$$

for $r_0 + \epsilon \le \rho \le R_0 - \epsilon$. The right side of (2.11) is surely non-negative if θ is such that $\cos (p\theta - \alpha_0) \ge 0$, that is, such that

$$-\frac{\pi}{2}+2\pi k \leq p\theta-\alpha_0 \leq \frac{\pi}{2}+2\pi k,$$

where k is an integer; that is, if

$$\frac{\alpha_0}{p} - \frac{\pi}{2p} + \frac{2\pi k}{p} \le \theta \le \frac{\alpha_0}{p} + \frac{\pi}{2p} + \frac{2\pi k}{p}, \qquad k = 0, 1, \dots, p.$$

In other words,

(2.12) Re
$$(\rho^p f(z)/a_p z^p) > 0$$

and hence $f(z) \neq 0$ at all points z between the curves $G(r_0, r; p, \alpha_0)$ and $G(R, R_0; p, \alpha_0 + \pi)$.

Inequality (2.12) also may be used to show that in or on the curve $G(r_0, r; p, \alpha_0)$, there are exactly p zeros of f(z). For, let us consider the net change $\Delta_{G_{\epsilon}}$ arg w in the argument of the point $w = \left[\rho^p f(z)/\alpha_p z^p\right]$ as z describes counterclockwise the curve $G_{\epsilon} = G(r_0 + \epsilon, r + \epsilon; p, \alpha_0)$ where ϵ is a small positive number. Since Re (w) > 0, w describes a closed curve entirely in the right-half w-plane. That is, $\Delta_{G_{\epsilon}}$ arg w = 0 on this curve. This means that the function w has as many zeros as poles in the curve G_{ϵ} and this, in turn, means that f(z) has precisely p zeros in G_{ϵ} for every sufficiently small positive ϵ .

3. Applications. Let us first apply Theorem 1.1 to the class of polynomials

(3.1)
$$f(z) = b_0 e^{i\beta_0} + (b_1 - b_0) e^{i\beta_1} z + \cdots + (b_m - b_{m-1}) e^{i\beta_m} z^m - b_m e^{i\beta_{m+1}} z^{m+1}$$

where the b_i are real numbers such that

$$(3.2) \quad b_{p-1} < b_{p-2} < \cdots < b_0 < 0 < b_m < b_{m-1} < \cdots < b_p.$$

The corresponding polynomials $F_p(z)$ and $\Phi_p(z)$ are

$$F_{p}(z) = -b_{0} + (b_{0} - b_{1})z + \cdots + (b_{p-2} - b_{p-1})z^{p-1}$$

$$-(b_{p} - b_{p-1})z^{p} + (b_{p} - b_{p+1})z^{p+1} + \cdots$$

$$+ (b_{m-1} - b_{m})z^{m} + b_{m}z^{m+1},$$

$$\Phi_{p}(z) = (b_{0} - b_{1}) + \cdots + (b_{p-2} - b_{p-1})z^{p-2}$$

$$-(b_{p} - b_{p-1})z^{p-1} + (b_{p} - b_{p+1})z^{p} + \cdots$$

$$+ (b_{m-1} - b_{m})z^{m-1} + b_{m}z^{m}.$$

On defining

(3.5)
$$g(z) = b_0 + b_1 z + \cdots + b_m z^m,$$

we may write

$$F_p(z) = (z-1)g(z), \qquad z\Phi_p(z) = b_0 + g(z)(z-1).$$

Clearly $F_p(1) = 0$. Since $F_p(1+\delta) = \delta g(1+\delta)$, then for δ sufficiently small g(1) > 0 implies that $F_p(1+\delta) > 0$ or < 0 according as $\delta > 0$ or < 0 and g(1) < 0 implies that $F_p(1+\delta) < 0$ or > 0 according as $\delta > 0$ or

<0. That is, using the notation of Theorem 1.1, we see that

$$r_0 < r < 1 = R < R_0$$
 if $g(1) > 0$,
 $r_0 < r = 1 < R < R_0$ if $g(1) < 0$,
 $\alpha_0 = \beta_0 - \beta_n + \pi$.

We thereby conclude that the following is true.

THEOREM 3.1. Let f(z), $\Phi_p(z)$ and g(z) denote the polynomials (3.1), (3.4) and (3.5) respectively. Then, if g(1) > 0, f(z) has exactly p zeros in the curve $G(r_0, 1; p, \beta_0 - \beta_p + \pi)$ and g(z) has p zeros in the curve $G(r_0, 1; p, \pi)$. If g(1) < 0, f(z) has p zeros in or on the curve $G(r_0, 1; p, \beta_0 - \beta_p + \pi)$ and g(z) has p - 1 zeros in or on the curve $G(r_0, 1; p, \pi)$.

An analogous result for g(z) with, however, curve $G(r_0, 1; p, \pi)$ replaced by the circle |z|=1 was first stated by Berwald.³ His result was a generalization of the Kakeya-Eneström⁴ theorem that all the zeros of the real polynomial (3.5) with $0 < b_0 < b_1 < \cdots < b_n$ lie in or on the unit circle |z|=1. Our analogy to the Kakeya-Eneström theorem will be included in the following theorem.

THEOREM 3.2. Every polynomial of the form

$$f(z) = \sum_{i=0}^{n} (b_i - b_{i-1})e^{i\beta_i}z^i, \qquad b_{-1} = b_n = 0 < b_0 < b_1 < \cdots < b_{n-1},$$

has all of its zeros in or on the curve $G(r_0, 1; n, \beta_0 - \beta_n + \pi)$ where r_0 is the positive root of the equation

$$\Phi_n = (b_1 - b_0) + (b_2 - b_1)z + \cdots + (b_{n-1} - b_{n-2})z^{n-2} - b_{n-1}z^{n-1} = 0.$$

Furthermore, every polynomial of the form

$$g(z) = b_0 + b_1 z + \cdots + b_{n-1} z^{n-1}, \quad 0 < b_0 < b_1 < \cdots < b_{n-1},$$

has all of its zeros in or on the curve $G(r_0, 1; n, \pi)$.

This theorem may be derived from Theorem 3.1 indirectly by a limiting process or directly by the same methods as used for Theorem 3.1.

In our next application, we shall use Theorem 1.1 just in the case p=n. This restriction is made only to simplify the statement of results, since a similar application may be made when p is an arbitrary integer, 0 . The result to be proved is the following.

³ L. Berwald, Math. Zeit. vol. 37 (1933) pp. 61-76.

⁴ S. Kakeya, Tôhoku Math. J. vol. 2 (1912) pp. 140-142 and G. Eneström, Ibid. vol. 18 (1920) pp. 34-36.

THEOREM 3.3. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ and $\mu_1, \mu_2, \dots, \mu_{n-1}$ be any two sets of numbers such that

$$\sum_{i=1}^{n} (1/\lambda_i) = 1, \quad \sum_{i=1}^{n-1} (1/\mu_i) = 1; \quad 0 < \mu_i \le \lambda_i, \ j = 1, 2, \cdots, n-1.$$

For the polynomial $f(z) = a_0 + a_1 z + \cdots + a_n z^n$, let

(3.6)
$$M = \max \left[\lambda_k \mid a_{n-k} \mid / \mid a_n \mid \right]^{1/k}, \qquad k = 1, 2, \dots, n,$$
(3.7)
$$M_0 = \max \left[\mu_k \mid a_{n-k} \mid / \mid a_n \mid \right]^{1/k}, \qquad k = 1, 2, \dots, n-1.$$

$$(3.7) M_0 = \max \left[\mu_k \left| a_{n-k} \right| / \left| a_n \right| \right]^{1/k}, k = 1, 2, \cdots, n-1$$

Then all the zeros of f(z) lie in or on the curve $G(M_0, M; n, \alpha_0)$, where $\alpha_0 = \arg (a_0/a_n)$.

From (3.6) and (3.7), obviously $0 < M_0 < M$. Also,

$$\lambda_k \mid a_{n-k} \mid \leq \mid a_n \mid M^k, \qquad \mu_k \mid a_{n-k} \mid \leq \mid a_n \mid M_0^k$$

and thus

(3.8)
$$\sum_{k=1}^{n} |a_{n-k}| M^{n-k} \leq \sum_{k=1}^{n} (1/\lambda_{k}) |a_{n}| M^{n} = |a_{n}| M^{n},$$

$$(3.9) \qquad \sum_{k=1}^{n-1} |a_{n-k}| M_0^{n-k} \leq \sum_{k=1}^{n-1} (1/\mu_k) |a_n| M_0^n = |a_n| M_0^n.$$

An equality in (3.8) would imply that M is the positive root r of the equation (1.2) whereas an inequality in (3.8) would imply that M > r. Likewise, an equality in (3.9) would imply that M_0 is the positive root r_0 of the equation (1.4) whereas an inequality in (3.9) would imply that $M_0 > r_0$. Since by Theorem 1.1 all the zeros of f(z) lie in or on the curve $G(r_0, r; n, \alpha_0)$, they surely all lie in or on the curve $G(M_0, M; n, \alpha_0).$

Theorem 3.3 whose proof we have just completed is a refinement of the result due to Fujiwara⁵ that all the zeros of f(z) lie in or on the circle $|z| \leq M$.

As a simple application of Theorem 3.3, let us take $\lambda_j = n$ for $j=1, 2, \dots, n$ and $\mu_j=n-1$ for $j=1, 2, \dots, n-1$. We obtain thereby the following corollary.

COROLLARY 3.3a. For the polynomial $f(z) = a_0 + a_1 z + \cdots + a_n z^n$ let $N = \max [n | a_{n-k}/a_n |]^{1/k}, k=1, 2, \dots, n, and N_0 = \max [(n-1)]$ $|a_{n-k}/a_n|$]^{1/k}, $k=1, 2, \cdots, n-1$. Then all the zeros of f(z) lie in or on the curve $G(N_0, N; n, \alpha_0)$ where $\alpha_0 = \arg (a_0/a_n)$.

⁵ M. Fujiwara, Tôhoku Math. J. vol. 10 (1916) pp. 167-171.

As another simple application of Theorem 3.3, let us take

$$\lambda_{k} = \sum_{j=0}^{n-1} |a_{j}| / |a_{n-k}|, \qquad k = 0, 1, 2, 3, \dots, n,$$

$$\mu_{k} = \sum_{j=0}^{n-1} |a_{j}| / |a_{n-k}|, \qquad k = 0, 1, 2, \dots, n-1.$$

Clearly,

$$\sum_{j=1}^{n} 1/\lambda_k = 1, \qquad \sum_{j=1}^{n-1} 1/\mu_j = 1.$$

Here

$$M = \max \left[\sum_{i=0}^{n-1} |a_i| / |a_n| \right]^{1/k} = \lambda_0 \quad \text{or} \quad \lambda_0^{1/n}$$

according as $\lambda_0 > 1$ or <1, and

$$M_0 = \max \left[\sum_{i=1}^{n-1} |a_i| / |a_n| \right]^{1/k} = \lambda_0 \text{ or } \mu_0^{1/n}$$

according as $\mu_0 > 1$ or < 1. We thereby obtain the following corollary.

COROLLARY 3.3b. For the polynomial $f(z) = a_0 + a_1 z + \cdots + a_n z^n$, let

$$\lambda_0 = \sum_{i=0}^{n-1} |a_i| / |a_n|$$
 and $\mu_0 = \sum_{i=1}^{n-1} |a_i| / |a_n|$.

Let $\gamma = \lambda_0$ or $\lambda_0^{1/n}$ according as $\lambda_0 > 1$ or <1, and let $\delta = \mu_0$ or $\mu_0^{1/n}$ according as $\mu_0 > 1$ or <1. Then all the zeros of f(z) lie in or on the curve $G(\delta, \gamma; n, \alpha_0)$ where $\alpha_0 = \arg \alpha_0/\alpha_n$.

4. Generalizations. Let us define $\Psi_{kp}(z) = F_p(z) - |a_k| z^k$, $k \neq p$. Since $\Psi_{0p}(z) = z\Phi_p(z)$, the positive zeros of $\Phi_p(z)$ are also the positive zeros of $\Psi_{0p}(z)$. By modifying somewhat the details of proof of Theorem 1.1, we may prove the following generalization.

THEOREM 4.1. Under the hypotheses of Pellet's Theorem the polynomial

$$\Psi_{kp}(z) = F_p(z) - |a_k| z^k, \qquad k \neq p, a_k \neq 0,$$

has also two positive zeros r_k and R_k with $r_k < r < R < R_k$. Furthermore f(z) has exactly p zeros in or on the curve $G(r_k, r; p-k, \alpha_k)$ where $\alpha_k = \arg(a_k/a_p)$ and none between the curves $G(r_k, r; p-k, \alpha_k)$ and $G(R, R_k; p-k, \alpha_k+\pi)$.

Our final generalization will consist in replacing the polynomial f(z) of Theorem 4.1 by a power series.

THEOREM 4.2. If the power series

$$f(z) = a_0 + a_1 z + \cdots + a_p z^p + \cdots, \qquad a_k a_p \neq 0,$$

having a radius of convergence of ρ , $0 < \rho \le \infty$, is such that each polynomial

$$F_{np}(z) = |a_0| + |a_1|z + \cdots + |a_{p-1}|z^{p-1} - |a_p|z^p + |a_{p+1}|z^{p+1} + \cdots + |a_n|z^n$$

with $n \ge N > p$ has a positive zero $r^{(n)}$, $r^{(n)} \le \rho_1 < \rho$, then the function $F_p(z) = \lim_{n \to \infty} F_{np}(z)$ has a positive zero $r < \rho$; the function

$$\Psi_{kp}(z) = F_p(z) - |a_k| z^k, \qquad k \neq p,$$

has a positive zero r_k , $r_k < r < \rho$, and the function f(z) has exactly p zeros in or on the curve $G(r_k, r; p-k, \alpha_k)$ and hence in the curve $G(r_k, \rho; p-k, \alpha_k)$.

This theorem results from Theorem 4.1 on the use of the Hurwitz theorem that within its circle of convergence a non-constant power series $f(z) = \sum_{j=0}^{\infty} a_j z^j$ has as zeros the limit points of the zeros of the polynomials $f_n(z) = \sum_{j=0}^n a_j z^j$.

If $F_{np}(z)$ has two positive zeros in $|z| < \rho$, we may choose $r^{(n)}$ as the smaller one. Letting

$$\Psi_{n^k:p}(z) = F_{n:p}(z) - |a_k| z^k,$$

we see that $\Psi_{nkp}(z)$ has a positive zero $r_k^{(n)}$, $r_k^{(n)} < r^{(n)}$. Clearly, the power series $F_p(z)$ and $\Psi_{kp}(z)$ have the same radius ρ of convergence and have respectively the positive zeros $r = \lim_{n \to \infty} r^{(n)}$ and $r_k = \lim_{n \to \infty} r_k^{(n)}$, with $r_k < r < \rho$. Now, given any small positive ϵ , we can find an N > 0 such that the circle of radius ϵ drawn about the point z = r will contain $r^{(n)}$ for all $n \ge N$ and the circle of radius ϵ drawn about $z = r_k$ will contain $r_k^{(n)}$ for all $n \ge N$. This means that in or on the curve $G(r_k + \epsilon, r + \epsilon; p - k, \alpha_k)$, which for any sufficiently small positive ϵ is contained in the circle $|z| < \rho$, lie exactly p zeros of each polynomial $f_n(z)$ for all $n \ge N$. Since a circle of radius ϵ about any zero of f(z) in $|z| < \rho$ contains a zero of each $f_n(z)$, $n \ge N$, it follows that in or on the curve $G(r_k + \epsilon, r + \epsilon; p - k, \alpha_k)$ lie exactly p zeros of f(z). Since ϵ is an arbitrary, small positive number, it follows that exactly p zeros of f(z) lie in or on the curve $G(r_k, r; p - k, \alpha_p)$ as stated in Theorem (4.2).

University of Wisconsin, Milwaukee