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1. Introduction. Let J be a closed linear interval ao^tSfo. Let 
r(/) = (#(/), y(t)} z(t)), tSI, represent a vector function whose three 
components x(t), y(i)t z(t) are of bounded variation and continuous 
on I. This vector function determines in Euclidean 3-space a curve 
x~x{t), y~y(t), z=*z(t) whose length we denote by LQç). By con­
vergence in length of a sequence of such vector functions $n(t) = (xn(t), 
yn(t), Zn(t)), w = 0, 1, 2, • • • , is meant that xn(t), y nit), zn(t) converge 
uniformly on I to Xo(t), yo(t), Zo(t) respectively and that L($n) con­
verges to L(ïo). We denote by V(f) the total variation on 7 of a scalar 
function ƒ(t) which is continuous and of bounded variation on I. By 
convergence in variation of a sequence ƒ»(/), w = 0, 1, • • • , is 
meant that fn(t) is continuous and of bounded variation on I for 
w=*0, 1, • • • , that fn(t) converges uniformly on I to fo(t), and that 
V(fn)-+V(fo). These concepts are due to Adams, Clarkson, and 
Lewy [1, 2].1 

We are concerned here with the problem of determining conditions 
under which convergence in length holds. Uniform convergence on I 
of the components xn(t), y nit), zn{t) to Xoit), y oit), Zo(t) respectively 
implies only that lim inf Z,(£w) â£(£o). It is also well known (see 
[2, 4„ 5]) that convergence in length of such a sequence £« implies 
convergence in variation of each of the three sequences of com­
ponents—and, indeed, convergence in variation of any sequence of 
scalar functions obtained by projecting the curves f = 3Cn(0» *€:^ 
w = 0, 1, • • • , on any line whatever. As a consequence of this we see 
that convergence in length of the sequence fn(0 implies convergence 
in variation of the sequence CiXn(t)+C2yn(t)+CzZn(t) for arbitrary 
choice of the constants ci9 c%, Cz. Convergence in variation of each of 
the three sequences of components is not sufficient to ensure con­
vergence in length of the sequence of vectors (see [2]). In connection 
with the work of A. P. Morse [4] there arose the question as to 
whether convergence in length is implied by convergence in variation 
of every linear combination of the components. This has already 
been proved by Morse [4] for the case where %n{t) is of the special 
form (/, y nit) y 0), w = 0, 1, • • • . In this note we generalize Morse's 
result to the parametric case. The proof is based on a generalization, 
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due essentially to Steinhaus [ó], of a remarkable formula for arc 
length devised by Cauchy [3]. 

2. Preliminaries. If each component of a vector function f(/) *=*(x(t)f 

y(Ot ^(0)i t&I, is BV (of bounded variation), then j(/) is said to be 
BV; if each component is AC (absolutely continuous), then j(/) is 
said to be AC; if each component is continuous, then $(£) is said to be 
continuous. We denote by f f{t) the vector (x'(t), y'{t), z'(t)) wherever 
the derivatives x'(t)t y'(t)t z'(t) all exist. If the components xn(t), 
yn(t), zn(t) of a sequence of vectors fn(0» t£I> w = 0, 1, • • • , con­
verge uniformly on I to Xo(t), yo(t)f Zo(t) respectively, we say that 
fn(0 converges uniformly on I to f0(0-

Let A denote any subinterval /' 1*t%tff contained in I and let D(I) 
denote any subdivision of I into a finite number of nonoverlapping 
intervals A. The length L($) of a vector function j(0, * £ / , is defined 
as 

L(X) - Lu.b. £ | ?(*") - t ( 0 I, AG D{T), 

where the least upper bound is taken over all subdivisions D(I). 
We note that this definition of length of vector functions is the 

exact analog of total variation of scalar functions and that it agrees 
with the usual definition of length of a curve if j(0 is BV and con­
tinuous on I and we think of %(t) as determining a curve x*=*x(f), 
y—y(t), z — z(t),a0StSbo. 

We mention now the following well known facts which will be used 
in this note. 

(a) If %(t) = (x(t), y(t), z(t)) is BV and continuous on I, then 

V(x) S L(x) £ V(x) + V(y) + Viz). 

(b) If fn-*fo(V), then kfn—*kfo(V) for arbitrary choice of the 
constant k. 

(c) If fnif) converges uniformly on J to fo(t) and if ƒ*(*) is BV and 
continuous on I for all n, then Hm inf V(fn) jè F(/o). 

(d) If f(t), t(£I, is BV and continuous, then f'(t) is summable on I 
and V(f)^fi\f\dtf the sign of equality holding if and only if f(t) is 
AC. 

(e) If x(t) is BV and continuous on I and if ï = ïn(0> *€=-!> 
w = l, 2, • • • , is a sequence of polygons inscribed in the curve 
ï = ï(0, * £ / , and converging uniformly on I to ï==ï(0» t^I* then 

(f) Let j*(fl -(**(*). y«(0» *»(')). t&> " = 0> 1, • • • . If ï«->ïo(£), 
then xn-+Xo(V). 
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(g) If ï(0> tÇzI, is BV and continuous, then | $'(t) | is summable on 
ƒ and L(%) à fi\ f\dt, the sign of equality holding if and only if {(/) 
is AC. 

LEMMA. Suppose yn—>fo(£). Let u be any fixed unit vector and fn(t) 
the scalar product of the vectors %n{t) and u; that is, 

fn(t) =Ui)u, te I, ^ = 0, 1, • •. . 

Thenfn->fo(V) and V(fn)SL(%n) for w = 0, 1, • • - . 

The function fn(t) defined here is the projection of the curve £ =*$n(t) 
on a line parallel to the given vector u. This fact is well known, as was 
mentioned in §1, but a proof will be included for the convenience of 
the reader. Let u be the vector (a, b, c), a 2 +t 2 +c 2 = l. Then ƒ„(/) 
— axn(i)+byn(f)+czn(t)t w = 0, 1, • • • . Let us set up a new system 
of rectangular coordinates x*, y*t s*, such that the #*-axis coincides 
with the line through the origin with direction cosines a, 6, c. Then 
x* is expressed in terms of the old coordinates as ax+by+cz. Let 
$*(t) = (x£(t), y*(t), z£{t)) denote the vector %n(t) referred to the new 
coordinates. Since arc length is independent of the particular co­
ordinate system used, we have £n*—»ïo*(£) and hence (see (f), (a)) 
x*->x0*(V) and 7(***)^L(ï*). But %*{t) =axn(t)+byn(t)+czn(t) 
=ƒ„(/), * e i , * - 0 , 1, • • • . That is, 

fn-+MV) and V(fn)£L(xn) 

for all n. 

3. Cauchy's formula. The formula for arc length which is stated in 
Lemma 4 applies to any continuous, rectifiable curve in Euclidean 
3-space. It is a direct generalization of a formula of Cauchy [3], the 
method of proof given here being due to Steinhaus [ö]. A proof of the 
formula is included in this note because the reasoning involved in it is 
used in §4, as well as the formula itself. 

LEMMA 1. Let a be a fixed vector and u a variable unit vector from the 
center of a unit sphere to any point p on the surface S of the sphere. Then 

if | a-u| da = 2x | a |, 

where da is the area-element on S. 

PROOF. Choose rectangular coordinates so that the s-axis coincides 
in direction with a. In terms of the spherical coordinates 1, 0, <£ of the 
point p on 5, we have ctu = | ct| cos </> and hence 
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I I | ct-u | d<r = I I | a I • I c o s 0 1 s in <f> ddd<t> 
J J s J o J o 0 

= 2TT I a ( 
J ( 

. W2 

ƒ | co s 4> | s in ^ dcj> 
o 

/

» ir/2 

s in 2<l>d<t> = 2TT | a | . 
0 0 

LEMMA 2. Le/ j(/) be BV and continuous on I. Let S be the surface of 
a unit sphere, p any point on S, and u the vector from the center of the 
sphere to p. For each point p on S let V (p) denote the total variation of 
the function f (tf p) =£(/)• u, ££ / . Then V{p) is summable on the sur­
face S. 

PROOF. Since ƒ(/, p) is clearly BV and continuous on I for each 
point p on S, V{p) is defined for every p. Consider now a sequence of 
points pn on 5 such that pn—>Po> It is easily verified that the sequence 
fit, pn) converges uniformly on / to ƒ(/, p0), from which it follows 
that lim inf V(pn)^V(po) (see (c) of §2). This means that V(p) is 
lower semi-continuous on S and hence measureable on S. From the 
fact that V(p) is bounded on S by L(f) (see Lemma of §2), we con­
clude that V(p) is summable on S. 

LEMMA 3. Given a sequence of BV, continuous vector f unctions £n(0> 
/£ƒ , » = 0, 1, • • • . Let S, p, u be defined as in Lemma 2. For eachp on 
S let Vn(p) denote the total variation of the function fn(t, P)~$n(t)'U, 
/ £ / , n = 0, 1, *''.If the sequence fn(tt p) converges in variation f or 
every point p on 5, then 

ffvn(p)d<r->ffVo(p)d<r, 
8 

where da is the area-element on S. 

PROOF. By hypothesis the sequence fn(t, p) converges in variation 
for every point p on S. Hence 

(i) vn(p) -> Vo(p), pes. 
Let a, h, c be any three (real) constants such that a2+b2+c2 — l. 
Since the point (a, b, c) lies on S, we then have by (1) convergence in 
variation of the sequence axn(t) +byn(t) +czn(t) and therefore 

V(axn + byn + czn) —> V(ax0 + by0 + cz0). 

In particular, 
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(2) V(xn) -+ V(xo), V(yn) -> 7(y0), V(zn) -> V(z0). 

Summability of each function Vn(p) follows from Lemma 2 ; Vn{p) 
converges on S to V0(p) by (1). In order to prove convergence of their 
integrals it will therefore be sufficient to show that the sequence 
Vn(P) is bounded on 5. For each point p on S we have by the Lemma 
1 and (a) of §2 

(3) Vn(p) £ L(u) è V(xn) + V(yn) + V(zn), n = 0, 1, • • • . 

But (2) implies the existence of a constant M such that 

(4) V(xn) g M, V(yn) g M, V(zn) SM, n - 0, 1, • • • . 

Inequalities (3) and (4) establish the fact that the sequence Vn(p) is 
bounded on S and hence, as remarked above, 

ƒ ƒ Vn(p)d<T-*ff Vo(p)d<T. 

LEMMA 4. Under the hypotheses of Lemma 2, 

Z(Ö = ( 2 T T ) ^ J J V(p)d*t 

where da is the area-element on S {this is the generalized Cauchy formula, 
see §3). 

PROOF. Let us suppose first that $(t) is AC. It is clear that for 
fixed p the function ƒ(t, p) is AC on I and that its derivative is equal 
to f(t) -u except on a subset of I of measure zero. Hence (by (d) of 
§2) 

(1) F ( 0 - ƒ IrtO-ulifc 

But absolute continuity of f (0 also implies (see (g) of §2) 

(2) L(x)-f\m\dt. 

Since V(p) is summable on S (see Lemma 2), we obtain by use of (1) 

ƒ f^ V(p)d<r - ƒ ƒ [ f' \ f ' (0 • U | # ] da 
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where the theorem of Tonelli justifies the changes in the order of 
integration. From (3), Lemma 1, and (2) we conclude that 

(2w)-iffv(t)d* - (2*)-* ƒ [ ƒ ƒ | *'(/)-u| dJ^dt 

Let us suppose next that f(/) is merely BV and continuous on I. 
Define £ = £n(0> ^G^, w = l, 2, • • • , to be a sequence of polygons in­
scribed in the curve £ = £(*)> *G/, £n(0 converging uniformly on i" to 
f(/). By (e) of §2 we then have £n—>£o(£) and hence 

(4) L(tn)->m. 

By the lemma of §2 we also have convergence in variation of the 
sequence fn(t, p) = £n(0 U, /GJ, for every point p on 5. Application of 
Lemma 3 then yields the result that 

(5) ƒ ƒ Vn(p)da -> ƒ ƒ 7fr) AT, 

where Vn{p) is defined as in Lemma 3 for » = 1, 2, • • • . But since 
each approximating function %n(t) is AC, we can express its length in 
the form 

L(xH) = (2T)~1 ƒ ƒ 7w(p)*r, n = 1, 2, • • . . 

In conjunction with (4) and (5) this implies 

L(t) = lîmICïO = lim (2T)"1 ƒ ƒ F»(j)*r = C2*^1 ƒ ƒ V(p)dv. 

4. The theorem. Let ï n W ^ W Ö , yn(0> *n(0)> n-O, 1, •• -, be a 
sequence of vectors which are BV and continuous on I. Then £n—»£o(£) 
if and only if the sequence Cixn(t)+Ctiyn(t)+CiZn(t) converges in varia­
tion for every choice of the (real) constants ci, c2, c3. 

PROOF. Sufficiency. By hypothesis the sequence cxXn{t)+c%yn(t) 
+CzZn(t) converges in variation for every choice of the constants 
Ci, c%, cz. This implies uniform convergence of icn(t) to £0(0 and also 
convergence in variation of /n(/, p) for every point p on 5, where 
fn(t, p) is defined as in Lemma 3. From Lemmas 3 and 4 we then con­
clude that 
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limi(ïn) = lim (2T)-* ƒ ƒ Vn{p)d<r « (2TT)~1 ƒ ƒ r0(*)Ar = £(f0) 

and hence ï«-*£o(£). 
Necessity, If £n—»£o(£), the sequence fn(t, p) converges in variation 

for every point p on 5 (see Lemma of §2). Let C\, c%, Cz be any three 
(real) constants. If Ci—C2ssczss0, then the statement is trivial. 
Otherwise let u be a unit vector with direction cosines proportional 
to Cu C2, Cz. The desired relation now follows readily from the lemma 
and (b) of §2. 
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