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1. Introduction. A set {fn(x) }f of functions of L2(a, 6), where (a, b) 
is finite or infinite, is called complete if g(x) ÇJL2 and Jlfn{x)g{x)dx 
= 0, w = l, 2, • • • , imply that g(x) = 0 almost everywhere on (a, b); 
a well known equivalent property ("closure") is that every element of 
L2 can be approximated in the L2 metric by finite linear combina­
tions of the /n(#). 

Suppose that {fn(x)} is not complete. It will sometimes be possible 
to find a function m(x) such that the set {m(x)fn(x)} is complete. 
This can also be considered as completeness after a change of weight 
function or a change of measure; but we shall not attempt to consider 
the most general change of measure here. We give some results on 
when a set can or cannot be completed by multiplication ; the prob­
lem of finding necessary and sufficient conditions is left open. 

We first state our results. 

THEOREM 1. If {fn(x)}? is an orthonormal set which is not complete, 
but can be completed by the addition of a finite number of functions to 
the set, then there is a bounded measurable function m{x) such that 
{m(x)fn(x) }i is complete. 

The condition of Theorem 1, while necessary, is not sufficient, as 
Theorem 2 shows. 

THEOREM 2. The orthogonal set {e~xl2L2n(x)}£, where Lzn{x) is the 
2nth Laguerre polynomial, cannot be completed on (0, <*>) by the addi­
tion of a finite number of functions, but is completed on multiplication 
by m(x)—e"x/2. 

Our next three theorems give examples of sets which cannot be 
completed by multiplication. 

THEOREM 3. A set of even functions cannot be completed by multiplica­
tion by an integrable function in any interval containing 0. 

THEOREM 4. The set {e2inx)l„ cannot be completed in (— r, IT) by 
multiplication by an integrable function. 

THEOREM 5. The set {x**}, where Xn>0, X) 1 An< 0 0 , cannot be 
completed in any interval by multiplication by a continuous function. 
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2. Proof of Theorem 1. For simplicity we suppose that the func­
tions are real. We first consider the case where the set has deficiency 
1, that is, can be completed by the addition of one function/0 . We 
may suppose that ƒ o is orthogonal to fn, n~l, 2, • • • ; for otherwise 
we could replace/o by / 0 — ]Ci°°/n(^)/a/o(0/n(0^» where ]T) implies 
convergence in Z,2, tha t is, convergence in mean square. Suppose that 
m(x) is measurable, bounded, never 0, but such that fo(x)/m(x) does 
not belong to L2 on (a, b) ; then if 

(1) J m(x)g(x)fn(x)dx = 0, * » 1, 2, • • • , 

with g(x)ÇzL2, we have, since {fn(x)}£ is orthogonal and complete, 
m(x)g(x) —cfo(x) almost everywhere for some constant c. Then c must 
be 0, since otherwise g(x)=cfo(x)/m(x) would not belong to L2 on 
(a, b); that is, since m(x) is never 0, g(x) = 0 almost everywhere. In 
other words, the set {m(x)fn(x)}? is complete. 

I t remains to construct m(x). Let £ be a bounded set of positive 
measure on which |/o(#)| è * > 0 ; choose m(x) on E so that m(x) is 
bounded and measurable and l/m(x) is never <*> but does not belong 
to L2 on E\ let m(x)=*\ elsewhere. This function has the desired 
properties. 

We now consider the general case. Here there are k functions 
fn(x), ft = 0, — 1 , —2, • • • , — k + l> such that {ƒ,*(*)}ü*+i is com­
plete. We may again suppose that {ƒ,»(#)} -t+i is an orthogonal set. 
I t is enough to construct a bounded measurable mix), never 0, such 
that {m(x) } " 1 ]C-*+i a,jfj(x) belongs to L2 only if all the ay are zero. 
For, if (1) is true, 

o 
(2) m{x)g{x) = X) *iM*)> 

and unless all the a, are zero, (2) contradicts the fact that g(x) belongs 
t o L 2 . 

We now construct m(x). Let £o be a bounded set of positive meas­
ure on which fo(x) 5^0. Construct a bounded measurable nto(x)t never 
0, such that fo(x)/mo(x) does not belong to L2 on £ 0 and mo(^) = l 
outside. We now proceed by induction. Suppose that 0 S n < k — 1 and 
that we have determined a bounded measurable mn(x) and a bounded 
set En of positive measure such that \mn(x) }"* ]T}°n ajfj(x) belongs to 
L2(a, b) only if all a,- are zero. Consider all linear combinations F—aofo 
+ a i / _ i + • • • + a _ n / - n + / - n - i . At most one function F(x)/tnn{x) can 
belong to L2(a, 6), since, if Fi/mn and F^mn both did, their difference 
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would not involve / - n - i and so could not belong to L2 by the induc­
tion hypothesis. If no F(x)/mn(x) belongs to L2, take En+i~En, 
inn+i(x) =mn(x). If some F(x)/mn(x) belongs to L2, | F(x) | >0 on some 
bounded measurable set E* of positive measure ; by making E* smaller 
if necessary, we may suppose that either (a) E* is disjoint from En 

or (b) £* is a subset of En. In case (a), let En+i = E n+E*; incase 
(b) let En+x~E*. Define a bounded measurable inn+i(x) so that 
mn+i(x) ^mn(x) and so that F(x)/mn+i(x) does not belong to L2 on 
En+i. Then mn+i(x) has the properties of mn(^), since mn(x) ^ n + i W , 
and, in addition, {tnn+i(x) j ^ S - n - i a>jfj(x) does not belong to L2 

unless all the ay are zero. This completes the induction; take m(x) 
= rnk-i(x). 

3. Proof of Theorem 2. (a) The functions er'i%L%»+i(t) are orthogonal 
to all e~'/2Zr2n(0 ; hence no finite set of additional functions will 
complete the latter set. 

(b) Suppose that g(t)€.L2(0, «>) and / « T r ^ Ö L ^ t t t - O , 
« = 0, 1, 2, • • • .That is, 

£ C2».* - ^—^ I r"g(()t*dt - 0, 

or A2n/xo = 0, where 

M* = (1/*!) t*thc-%g<ûit. 
Jo 

Also, 

' M* ' ~ 2*w»tl iJo g2(/) J * c o n s t a n t î 

that is, {ju*} is bounded. By a theorem of Agnew [l]1 and Fuchs [2], 
[3], Mfc = 0, ]fe = 0, 1, 2, • • • . Hence [4, p. 20] gOO=0 almost every­
where. 

4. Proof of Theorem 3. Let the functions ƒ„(#) be even and be­
long to L2(—ay a). We shall show that for every integrable m(x) there 
is a bounded g(x), not almost everywhere zero, such that 

(3) | g(x)m(x)fn(x)dx = 0, n - 1, 2, - • • . 

1 Numbers in brackets refer to the references at the end of the paper. 
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This is trivial if m(x) =0 on some set of positive measure. Otherwise, 
since m(x) is integrable, there is a set E of positive measure in (0, a) 
on which m(x) is bounded and not zero. Let E\ be the symmetric 
set in (—a, 0). E\ contains a subset E% of positive measure on which 
m(x) is bounded and not zero. Let £3 be the symmetric set in (0, a). 
Let g(a;)=m(—x) in E2, g(x) = — tn(—x) in E3, g(x)s=0 elsewhere. 
Then m(x)g(x) is odd and fn(x) is even, So (3) follows. 

5. Proof of Theorem 4. As in §4, if m(x) is integrable we have to 
find g(x), not almost everywhere zero, such that 

f g(x)tn(x)e2in*dx = 0, n = 0, ±1 , ±2, • • • . 

This is trivial if m(x) =0 on some set of positive measure. Otherwise, 
we can find E, of positive measure, in (— 7r, 0), with m{x) bounded 
and bounded from zero. The set Ei obtained by adding ir to every 
point of £ is a subset of (0, if) ; it contains a subset E2 of positive 
measure on which m(x) is bounded and bounded from zero. Let £3 be 
the set obtained by subtracting TT from every point of £2 and let 
£ 4 = £ 2+£3. Let f(x)^l/m(x) in £4, / (*)=0 elsewhere. Then 
f(x)m(x) has period w and so is orthogonal to e(2w+1)i*, w = 0, ± 1 , 
±2, • • • , and is different from 0 on a set of positive measure. 

The same argument shows that |e2*na?} cannot be completed by 
multiplication on any interval of length exceeding w. 

6. Proof of Theorem 5. It is known that the U span of {xKn}f 

53l/Xn< 00, on any interval not containing 0, contains only func­
tions analytic in that interval [5]. Suppose that {m(x)xxn] were 
complete, hence closed, with m(x) continuous. Let I be an interval 
in which | m(x) \ >e>0. Then to every ƒ (x) of L2(I) and every positive 
ô there would exist constants a& such that 

ƒ I m(x) £ akx^ - ƒ(*) \Hx < fc2, 

and hence 

ƒ I Z <*kx"k - ƒ(*)/«•(*) \2dx <lô. 

Thu8f(x)/m(x) would be in the span of {#x»}, but we can certainly 
find f(x) of L2 with f(x)/mfa) not analytic in I. 



5 2 2 R. P. BOAS AND HARRY POLLARD 

R E F E R E N C E S 

1. R. P. Agnew, On sequences with vanishing even or odd differences, Amer. J. Math, 
vol. 66 (1944) pp. 339-340. 

2* W. H. J. Fuchs, A theorem on finite differences with an application to the theory 
of Hausdorff summabilityt Proc. Cambridge Philos. Soc. vol. 40 (1944) pp. 189-197. 

3. , On the closure of {«r^v}, Proc. Cambridge Philos. Soc. vol. 42 (1946) 
pp. 91-105. 

4. J. A. Shohat and J. D. Tamarkin, The problem of moments. Mathematical 
Surveys, no. 1, New York, 1943. 

5. L. Schwartz, Étude des sommes d*exponentielles réelles, Actualités Scientifiques 
et Industrielles, no. 959, Paris, 1943. 

BROWN UNIVERSITY AND 
CORNELL UNIVERSITY 


