
GLOBAL THEOREMS IN RIEMANNIAN GEOMETRY 

C. B. ALLENDOERFER 

1. Introduction. I come to you today disguised as a missionary in 
an effort to interest you in the present day activities of differential 
geometers. The chief stimulus to differential geometry in the present 
century has been the General Theory of Relativity which is written 
in the language of Riemannian Geometry. Much of the effort of dif­
ferential geometers in the twenties and thirties was directed toward 
generalizations of Riemannian Geometry which might lead to the 
elusive Unified Field Theory. With the virtual exhaustion of efforts 
in this direction several leading American differential geometers 
turned their attention to other fields of mathematics, others retired 
from active research, and the study of differential geometry in this 
country dropped to its lowest point in many years. 

As this situation was deteriorating at home, a new trend in differ­
ential geometry was taking root abroad, namely the study of differen­
tial geometry "in the large." The general problem proposed was to 
develop relationships between the local differential properties of a 
space and its topologie structure as a whole. Leaders in this move­
ment were H. Hopf and his pupils in Switzerland, de Rham in France, 
and Hodge in England. Contributions were made by various writers 
in the United States including Myers, Chern, Weil, and Allendoerfer; 
and the field has now matured to a point at which its general scope 
can be outlined and its major problems enumerated. It is now an ac­
tive frontier in mathematics, ripe for development, and full of inter­
est to mathematicians in numerous branches of our subject. Further­
more its investigation raises new questions in ordinary differential 
geometry, and these give promise of providing the stimulus needed 
to revive activity in differential geometry throughout this country. 

Time is too short today to give a systematic survey of this field;1 

so I shall sketch the status of some of the major problems and give 
details of several topics which should serve as illustrations of the 
methods employed and the type of results that can be obtained. 

2. The main problems. The raw material of the subject is a dif-
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1 Such an article will appear in the author's detailed report on the session on dif­
ferential geometry of the Princeton Bicentennial Conference on Mathematics. 
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ferential manifold, namely a topological manifold defined in terms 
of neighborhoods each supplied with a coordinate system such that 
the coordinates of overlapping neighborhoods are differentiable func­
tions of each other (with nonvanishing Jacobian) within the common 
region. The order of differentiability involved (usually called the class 
Ck) varies with the problem to be considered; but except for a few 
cases which require analyticity, fourth order partial derivatives are 
usually sufficient. On this manifold is imposed a Riemann metric 

ds2 = gapdxadxfi 

where gap is usually required to be positive definite. Such a manifold 
is called "complete" if it is complete in the usual sense; that is, if 
every Cauchy sequence converges; and it is proved that complete 
manifolds are also locally compact. Five main problems have arisen 
concerning such manifolds : 

A. The problem of continuation. Here one is given an w-cell provided 
with an analytic Riemann metric, and the problem is to determine 
those complete manifolds (if any) to which this element can be continued. 
The chief contributions to this problem have been made by Myers 
[8].2 He has shown that not every analytic Riemann element can be 
continued to a complete manifold and has given a number of neces­
sary conditions and some sufficient conditions. A definitive set of 
necessary and sufficient conditions has yet to be found. Myers has 
also proved the following uniqueness theorem: 

THEOREM. Every n-dimensional Riemann element can be continued 
to at most one complete, simply-connected n-dimensional manifold M\ 
that is, if two such continuations exist, they are isometric. 

B. The problem of metrization. In a sense this is the inverse of the 
problem of continuation, namely: Given a manifold, what Riemann 
metrics (analytic or otherwise) can be used to metrize the entire manifold? 
The final solution of this question must await, among other things, 
the development of definitive topologie criteria for identifying homeo-
morphic manifolds. But even in the two-dimensional case where the 
topologie problem is solved, the problem of metrization is still open. 
Developments so far have been concerned (except in trivial cases) 
with necessary conditions. These seek to establish relationships be­
tween the differential invariants of the Riemann metric and the topol­
ogy of the space. Connections of this sort have been made with the 
Euler-Poincaré characteristic, cohomology characteristic classes, 

2 Numbers in brackets refer to the bibliography at the end of the paper. 
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Betti numbers, and the fundamental group. Since I shall return to 
certain aspects of this problem, for the moment I shall pass on to a 
statement of the other problems. 

C. The problem of imbedding. Here we are given a Riemann mani­
fold, Mn, and ask the question: Is Mn isometrically imbeddable in a 
Euclidean space! If so, what is the least dimensional Euclidean space 
for which the imbedding is possible? When the imbedding is possible, is 
it unique? Results in this field are most fragmentary, and consist 
chiefly of negative information and uniqueness theorems. For ex­
ample, Hubert has shown the impossibility of imbedding the hyper­
bolic plane in Euclidean three-space; but the fundamental questions 
stated above are unanswered for this manifold. 

The uniqueness theorems state that an imbedding, if possible, is 
unique to within rigid motions or reflections. For two-dimensional 
surfaces in Euclidean three-space, Weyl [13] has shown that every 
convex surface is uniquely imbedded. For higher dimensions Beez 
[3 ] has shown that unicity of imbedding of Mn in a Euclidean space 
of n+1 dimensions follows from the hypothesis that the second funda­
mental form of Mn is of rank ^ 3 . His results were extended by Allen-
doerfer [l ] to cover imbeddings in Euclidean spaces of arbitrary di­
mensions. These theorems, however, hold in the small as well as in 
the large, and the question of the unicity of imbedding in the large 
under more general hypotheses is still unanswered. 

D. The problem of geodesies. In general terms this problem may be 
stated : What are the properties in the large of geodesies lying in a com­
plete manifold? To be more specific consider the following question: If 
we have a geodesic, C, passing through a point P of a complete mani­
fold, how far can C be extended from P before it intersects itself or 
another geodesic through P, and how far along its path does C meas­
ure a minimum distance from P? Considerable attention has been 
directed to the description of the loci of minimum and conjugate 
points of P. The results of these investigations are intended (among 
other things) to answer the question as to the maximum size of a nor­
mal coordinate system centered at a point P. Full results for # = 2 
have been obtained by Myers [9, 10 ], but a number of questions re­
main open for general values of n. 

E. Metric theorems in the large. A number of theorems of differential 
geometry deal with properties of the whole of a curve or higher-dimen­
sional subspace. Many of these were developed initially for plane 
curves, but when these are generalized to curves in Riemann mani­
folds it becomes essential to study the topology of these manifolds. 
Indeed without such study it is not possible to give an efficient or 



252 C. B. ALLENDOERFER [March 

properly general statement of the theorem. As an example, I cite the 
well known theorem of Steiner on parallel curves. Let C be a closed, 
convex plane curve and let Cp be a curve outside C parallel to it at a 
distance p ; that is, Cp is obtained by displacing the points of C a dis­
tance p along outward drawn normals to C. If L is the length of C and 
Lp the length of Cp, Steiner showed that 

Lp = L + 2irp. 

The convexity hypothesis may be replaced by the equivalent require­
ment that no two normals to C intersect outside C. However, when 
we turn to a right circular cylinder (which has the same local differ­
ential geometry as a plane), the theorem is no longer true. For a cir­
cular cross section of the cylinder and its parallels all have equal 
lengths. The difference is that the topology of a cylinder is not that 
of a plane. The theorem, however, is true on a cylinder if we restrict 
C to curves which bound a finite area. Other theorems of this nature 
are the isoperimetric theorem, and the four vertex theorem. 

3. The Kronecker index. Returning now to the problem of metri-
zation, I wish to discuss certain aspects of this problem and to 
describe several tools which have proved useful in attacking it. The 
first of these is the Kronecker index of a vector field on a closed hyper-
surface 5 n of a manifold Mn+1. When Mn+l is Euclidean this index 
takes the form: 

(i) 

where 

0)nJ8n 
Ddx1 • • • dxn 

D 

dVl 

dx1 

dV1 

dxn 

. yn+i 

dVn+l 

dx1 

dyn+i 

dxn 

xl, • • • , xn are coordinates on 5n, and V1 is a unit vector field in the 
Euclidean space having no singularities on S \ cow is the area of an n-
dimensional sphere. The useful properties of I follow from the fact 
that it can be proved to be an integer; and this integer is shown to 
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equal the algebraic sum of the orders of the singularities of V* within 
S\ 

For present purposes the most useful result is obtained when n is 
even and V1 is the unit normal vector field to Sn in the Euclidean 
space. Then i"=x/2 where % is the Euler-Poincaré characteristic of 
Sn. Moreover in this case the integrand in (1) is expressible in terms 
of the determinants of the first and second fundamental forms of 5n, 
namely gap and bap. Hence 

2 œnJs
n \ gafil 

The ratio | bap\ /\gap\ is called the "total curvature,n KT, of Sn since 
it represents the product of the n principal curvatures of the hyper-
surface. Since we have assumed that n is even, KT can be expressed 
solely in terms of the intrinsic metric of 5n, namely in terms of gap and 
their derivatives. This generalization of Gauss' "Theorema Egre-
gium" follows from the equations of Gauss: 

(3) Rafiyt = baybpi — 6«j6/}7 

where R*py9 is the Riemann tensor, an algebraic expression in gap and 
their derivatives. The result of this substitution is: 

(4) KT * i ; 

and hereafter KT will stand for this expression, even when we do not 
assume Sn to be a subspace of any Euclidean space. Thus we have an 
integral relationship 

(5) I KTglf2dx = o)n— (weven) 
J sn 2 

between the intrinsic differential invariant KT and the topologie in­
variant x. Regarding Sn as a given topologie manifold, this becomes a 
necessary condition upon the Riemann metrics which may be used 
to metrize it, and hence this is a contribution to the problem of 
metrization. 

The validity of (5) so far has been established only under the as­
sumption that Sn is a hypersurface of a Euclidean space; but its in­
trinsic form suggests that it may be true for any closed differentiable 
manifold. This is indeed the case, and it should be remarked at this 
point that an excellent way of discovering relations like (5) is first to 
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consider an imbedded manifold and then later to invent a new proof 
applicable to a general abstract manifold. 

In order to establish the general validity of (5) and to illustrate 
further the Kronecker index, we shall follow a method due to Chern 
[5] in obtaining this result, which was first proved by Allendoerfer-
Weil [2] in a more complicated fashion. It is well known that the 
Euler-Poincaré characteristic of a closed manifold Mn is equal to the 
algebraic sum of the orders of the singularities of an otherwise con­
tinuous vector field on Mn. By contrast to the normal vector field 
used above, these vectors are intrinsic, or tangent, vectors. It there­
fore appears desirable to find a generalization of (1) valid on Riemann 
manifolds. Following the usual procedure for making such generaliza­
tions, we replace the partial derivatives in (1) by covariant deriva­
tives and introduce components of the Riemann tensor at appropriate 
places. However, there are so many ways in which the Riemann ten­
sor can be introduced, that it is not easy to guess the correct form of 
the final answer. In order to do this systematically we consider for the 
moment only manifolds Mn which are hypersurfaces of an ( T r i ­
dimensional Euclidean space. Using the method of tubes as developed 
by Allendoerfer-Weil we arrive at the following expression for I: 

(6) 

where 

(7) 

where 

I = lim I <t>dxx • • • dx"-1 

1 / . r / l 
<j> = — I A(6)dd 

0)nJ -r/2 

m 

< n columns 

i ik dy1 

[cos 6Vtj — sin 6g bkj] 
dx« 

1 row 

n — 1 rows. 

In (6) and (7) P is an isolated singularity of the unit vector field Vi; 
5n~1 is an (# —1)-dimensional topologie sphere enclosing P\ y* are 
coordinates on Mn; xa are coordinates on 5n~1; gij and bij are the first 
and second fundamental forms of Mn relative to the Euclidean space 
in which it lies; V*,j is the covariant derivative of V1 relative to the 
metric gy\ and for convenience in the sequel the dimensions have 
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been taken to be one lower than those of the corresponding formula 
(i). 

At first sight <t> does not appear to be intrinsic relative to Mn. How­
ever, after the integration the elements bik appear only in second or­
der minors of the matrix ||ô<*||, and hence they can be expressed in 
terms of the Riemann tensor of Mn by equations (3). The result of 
this substitution is a very complex expression which is omitted here 
(see Chern [5]). This expression has been derived on the assumption 
that Mn is imbedded in a Euclidean space ; but now that it has been 
invented, we use it to define <j> for all manifolds Mn whether imbedded 
or not. In all cases I can be proved to be an integer which represents 
the order of the singularity of V1 at P. 

To find x we then take the sum of the indices at each singularity, 
and the resulting sum can be expressed as an integral over Mn by vir­
tue of the generalized form of Stokes' Theorem which states that : 

(8) f 4>= f *4> 

where R is a region of Mn and B is its boundary. It turns out that 

d<l> = (n even) 
(9) co» 

= 0 (n odd) 

independently of the vector field V1 from which we started. This es­
tablishes (5) in general. In this form (5) is a restricted case of the gen­
eralized Gauss-Bonnet Formula for Riemannian Polyhedra developed 
by Allendoerfer-Weil [2]. 

4. Problems growing out of the Gauss-Bonnet formula. As I stated 
at the outset, the development of such a result leads to new problems 
both in differential geometry and topology. The first of these concerns 
the analogous results for open manifolds. Cohn-Vossen [ó] has proved 
that 

(10) f KTgll2dx £ «»• — 
J Mn 2 

for two-dimensional open manifolds without boundary provided that 
the left-hand integral exists as an improper integral. The problem for 
w-dimensional open manifolds is unsolved. Its solution appears to 
require on the one hand a study of the topologie properties of vector 
fields defined on open manifolds, and on the other hand the addi-
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tional study of the differential geometry of the expression 0. To 
illustrate one of the topologie difficulties I might mention that Cohn-
Vossen makes essential use of the fact that any finitely connected 
two-dimensional open manifold (without boundary) is homeomorphic 
to a closed manifold from which a finite number of points have been 
removed. No suitable generalization of this result for n dimensions 
appears to be known. 

The expression <j> appears in the work of Allendoerfer-Weil and that 
of Chern, but its full meaning is yet to be uncovered. As a partial step 
in this direction I have noted that : 

(11) il—1 « f <t>dxl • • • dx*~l 

is a proper definition of the solid angle of the vector field V* relative 
to a hypersurface -Rn_1 of Mn. Rn~l may be the whole of a closed hy-
persurface or may be any (» —1) -dimensional subset of a hypersur­
face. Because of the role which solid angle plays in physical field 
theories in ordinary space, it is likely that this expression may have 
applications to similar theories in general Riemann spaces. 

Let the hypersurface R""1 have a boundary Bn~2 and let ^n~1 be 
another hypersurface with the same boundary such that the vector 
field V1 has no singularity in the volume enclosed by these two hyper-
surfaces. If the manifold Mn is Euclidean, it is known that the solid 
angle of V* relative to Rn~l is equal to that of V1 relative to 3?n~1 and 
hence depends solely on the boundary Bn~2. In a curved Riemann space 
of even dimension this conclusion follows in general only if KT = 0. 
For the difference between these two solid angles is equal to the inte­
gral of KT over the enclosed volume. This means that an absolute 
notion of (n — 1)-dimensional solid angle exists in an even-dimensional 
Riemann space when and only when 2£V = 0. When n is odd, the two 
solid angles are equal without restriction. This situation is analogous 
to the known result that the angle between two vectors at different 
points in a Riemann space is independent of the path joining these 
points only when the Riemann space is flat; that is, when Rijki — 0. 

Levi-Ci vita has called a vector field "parallel" with respect to a 
curve, C, if Vjdyt/ds=*0 along C (whose equations are ?*=ƒ*($)). 
When « = 2, 

(12) 
1 

IT 

v1 

i dy> 
Vj 

ds 

v2 

2 dy> 

vti— ds 
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Since V* is assumed to be a unit vector, it follows that V* is "paral­
lel" along C if and only if <£ = 0 along C. By way of generalization we 
may therefore say that a unit vector field on Mn is parallel (of order 
n — 1) relative to a hypersurface i?""""1 whenever <£ = 0 on J?**"1. Further, 
just as absolute parallelism of Levi-Ci vita exists only when RMI — O, 
absolute parallelism of order n~ 1 exists only when n is odd, or (when 
n is even) when KT = 0. A full discussion of this generalized type of 
parallelism together with the obvious intermediate cases must await 
another occasion. I mention it here chiefly as an illustration of the 
type of stimulus to ordinary Riemannian geometry which results 
from the study of problems in the large. 

5. The nature of curvature. Let us now turn to the total curvature, 
KT, itself. Although this quantity appears here and there in the litera­
ture, its study has been sadly neglected. Practically all the work on 
the "curvature " of Riemann spaces is concerned with the Riemann 
tensor R^ki itself or with its contraction i?ty. Let me remind you that 
the common interpretation of Rau is in terms of the Gaussian two-
dimensional curvature of a geodesic two-dimensional surface asso­
ciated with an arbitrary bi-vector. We have thus been limiting our­
selves to an interpretation of the curvature of w-space in terms of our 
knowledge of two-space. It is time that we really set out to find some 
truly ^-dimensional theorems not bound by this limitation. For ex­
ample we can discuss the total curvature KT of the geodesic surface 
of 2k dimensions associated with an arbitrary set of 2k independent 
vectors Aj, • • • , X^. Then we have the expression : 

j? \ n \ r * * \ P 1 \**h 

•K-n- ' •rçjfciPl* • 'Î>HA1 * * * A2fc Al • • * A2& 
2k = ~""""—" 

. r r2k Pi ^Pik 
£*V • •rçjfcîpi* • 'PJfe2Al * * * A2A; Al • • • A2& 

- P 7? h--hhiyhk 
Jvn' ' 'rtk'Pi' - 'Pik """ "t-hhhh ' ' ' J*-itk-ihk-ihkhk*n' "rtk*Pi' • 'Pw 

__ h" 'hk h' "hk 
gri> • -r2k>Pl' ' 'Pik ~~ Shh ' ' ' Sbhhlfal' ' '*ikePl" 'Pik* 

There are thus [n/2 ] such curvatures available to describe the nature 
of an w-space, the highest of which for n even is KT. 

Very little is known about these curvatures; in particular it would 
be interesting to know the properties of a space which are implied by 
the vanishing of one or more of the curvatures Kw. For example, a 
four-dimensional space with J K ^ O and with #4 = 0 is still unexplored 

(13) 

where 
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for the purposes of relativity theory. The difficulties involved in in­
venting such theorems arise partly from our lack of intuition when the 
dimension exceeds three and partly from the nonlinearity of the dif­
ferential equations which these conditions imply. 

6. The Hodge theory. Much more modern than Kronecker is the 
che work of Hodge [7] which has just begun to be exploited towards 
the ends with which I have been concerned today. Hodge has defined 
for skew-symmetric tensors two derived tensors which generalize the 
curl and divergence of a vector. For the tensor Tai . . . «r (skew-sym­
metric in each pair of indices) these are : 

(14) dT = r^. . . a r ,« r + le*'--H*«r«.. .«» 

and 

(15) a r = röl...«r,«r+1g«^H-i, 

If both dT=0 and 5 r = 0 , T is called a harmonic tensor of order r. 
His main theorem is that the rth Betti number of a closed orientable 
manifold Mn is equal to the number of linearly independent harmonic 
tensors of order r on Mn. This should lead to a method of computing 
the Betti number of such a manifold in terms of its local differential 
geometry. The only result so far is due to Bochner [4]: If the Ricci 
tensor Rjk^Rijkig*1 of a closed Riemann manifold is positive definite, 
the first Betti number of the manifold is zero. This result, however, was 
first proved in an entirely different fashion and in a somewhat 
stronger form by Myers [ l l ] . 
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