
NOTE ON THE LOCATION OF THE CRITICAL POINTS 
OF HARMONIC FUNCTIONS 

J. L. WALSH 

By a limiting process, a theorem recently proved by the writer 
can be generalized, and yields a new result with interesting applica­
tions which we wish to record here. We take as point of departure1 

the following theorem. 

THEOREM 1. Let the region R of the extended (x, y)-plane be bounded by 
a finite number of mutually disjoint Jordan curves Co, G., C2, • • • , Cn. 
Let the function u(x, y) be harmonic in R, continuous in the correspond­
ing closed region, equal to zero on Co and to unity on G, C2, • • • , Cn. 
Denote by Ro the region bounded by Co containing the curves 
Ci, C2, • • • , Cn in its interior; define noneuclidean straight lines in Ro 
as the images of arcs of circles orthogonal to the unit circle, when Ro is 
mapped conformally onto the interior of the unit circle. 

If II is any non-euclidean convex region in R0 which contains all the 
curves Ci, C2> * • * » Cn» then II also contains all critical points of 
u(x, y) in R. 

We extend Theorem 1 by admitting arcs of Co on which u(x, y) 
is prescribed to take the value unity, and also by admitting the inter­
section of curves Ci, C2, • • • , Cn with Co: 

THEOREM 2. Let the region R be bounded by the whole or part of the 
Jordan curve Co, and by mutually disjoint Jordan arcs or curves Ci, 
C2, • • • , Cn in the closed interior of Co; some or all of the latter arcs or 
curves may have points in common with Co. Let a finite number of arcs 
«1» «2, • • • , am of Co belong to the boundary of R and be mutually 
disjoint. Let the function u(x, y) be harmonic and bounded in R, and 
take continuously the boundary values unity on &, C2, • • • , Cn, 
ot\y «2, • • • , a m and zero in the remaining boundary points of R, except 
that in points common to Co and G + C 2 + • • • + Cn and in end points of 
the aj, no continuous boundary value is required. Denote by Ro the region 
bounded by Co containing i?, and define non-euclidean straight lines in 
Ro by mapping RQ onto the interior of a circle. If H is any closed region 
in the closure of Ro which is non-euclidean convex and which contains 
C1+C2+ • • • +Cn+(Xi+a2+ • • • +am, thenTL contains all critical 
point of u(x, y) in R. 
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Theorem 2 may be proved by mapping R0 onto the interior of the 
unit circle; we retain the original notation. The region R can be 
approximated by a region R' bounded by Co and by Jordan curves 
Ci/,C2

/, • • • , Cn , a{, a2', • • • , a J in R0 which are mutually 
disjoint and disjoint with Co and which respectively approximate 
G., C2, • • • , Cn, ai, CK2, • • • , am. Let the function u'(x, y) be har­
monic in R', continuous in the corresponding closed region, zero on 
Co and unity elsewhere on the boundary of R'. Then as R' suitably 
approaches R, the variable function u'(x, y) approaches u(x, y) 
throughout R, uniformly on any closed set interior to R; we omit 
the proof. Any critical point of u(x, y) interior to R is a limit point of 
critical points of the variable function u'{x, y), so Theorem 2 follows 
from Theorem 1. 

A further general result has recently been established2 for the 
case # = 0, which constructs II in R0 not by joining the ends of each 
arc of Co in the complement of the set ay by a non-euclidean line but 
by similarly joining the ends of each double arc composed of an 
aj plus one of the adjoining arcs of Co complementary to the set 
ai+a2+ • • • +ccm. It is still true (we shall refer to this result as 
Theorem 3) that II contains all critical points in R of the corre­
sponding harmonic function u(x, y). 

Theorem 3 is more powerful than Theorem 2 for the case n = 0, but 
requires for its application essentially the use of a specific conformai 
map, and the latter quality may be an advantage or a disadvantage. 
I t is an indication of the power of Theorem 2 that in the application 
of it to a given configuration, with or without the auxiliary use of 
conformai mapping, there may obviously be some arbitrariness in the 
notation, especially as to what shall be chosen as the region i?0. So far 
as convenience is concerned, it is desirable to choose simple con­
figurations, where the totality or useful subset of non-euclidean lines 
is easily determined. It is also well to choose R0 in such a way that 
the point set C i+ • • • + C n + a i + • • • +am is as nearly non-
euclidean convex as possible. But if the aim is precision, the larger R0 

the better, as we proceed to indicate in a special but typical case. 
In Theorem 2, let Co be the unit circle in the s-plane, n = 2, ra = 0, 

with Ci and C2 mutually disjoint Jordan arcs whose end points lie on 
Co and whose interior points lie interior to Co. Let the subregion R of 
the interior of Co be bounded by Ci, C2, and two appropriate arcs of 
Co. In the actual application of Theorem 2, we can choose RQ as 
the interior of Co, or as the region i?i containing R bounded by G 

2 J. L. Walsh, Proc. Nat. Acad. Sci. U.S.A. vol. 33 (1947) pp. 1&-20. 
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and a suitable arc of Co, or as the region R2 containing R bounded by 
G and a suitable arc of Co, or as R. We now show as a general indica­
tion but without a complete rigorous proof that among these choices 
the most precise results are obtained by choosing Ro as the interior of Co. 

Map (for instance) the region R onto the interior of the unit circle 
in the «/-plane. Let az be an arbitrary arc of Co belonging to the 
boundary of R, which corresponds to the arc aw in the w-plane. 
Let ai be the circular arc having the same end points as az, orthog­
onal to aZl and whose interior points lie interior to Coî we assume 
ai to lie in the closure of R. Let aw' be the circular arc having the 
same end points as aw, orthogonal to aw, and whose interior points 
lie in \w\ < 1 . The arcs ai and aj determine the respective non-
euclidean geometries in the js-plane and w-plane, and it follows from 
a general theorem due to R. Nevanlinna3 that the region bounded by 
az and ai contains every point of the image of the region bounded by 
aw and a J. Corresponding to every arc az belonging to the boundary 
of R and on which the prescribed boundary value of u(x, y) is zero, 
and to the adjacent arc ai , with no point of G or C2 in the lens-shaped 
region between az and ai there exists in the w-plane an arc aw 

whose end points correspond to those of az under the conformai map, 
such that the interior points of the arc aj lie interior to the lens-
shaped region bounded by aw and the image of ai. It follows that if 
we neglect arcs ai that cut G or G in R, then in this particular case 
Theorem 2 can be more favorably applied by choosing R0 as the 
interior of Co, that is to say, as large as possible. 

The remark just made is of fairly general application. Moreover, 
in the specific case used, the interior of the given Co may be enlarged, 
without altering R or u(x, y), by adding to R0 regions adjacent to the 
arcs A of the given Co bounded by the end points of G and G, the 
arcs A not being part of the boundary of R. Indeed, we may even 
adjoin an infinitely many sheeted logarithmic Riemann surface along 
each arc A ; this is equivalent to mapping onto the interior of the unit 
circle the region R plus auxiliary regions, so that with the omission 
of two exceptional points the circumference of the unit circle cor­
responds only to that part of the boundary of R on which the pre­
scribed boundary value of u(x, y) is zero. The image of G (and like­
wise of G) under this map is a Jordan curve which except for a single 
point lies interior to the unit circle. 

Still another instructive kind of conformai map can be used, namely 
to map i ? + G + G onto the interior of the unit circle in such a way 

3 Eindeutige analytische Funktionen, Berlin, 1936, p . 51. 
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that G and G correspond to radial slits, while the part of the 
boundary of -R on which u(x, y) has the prescribed boundary value 
zero corresponds to the whole circumference less two points. Here the 
region II of Theorem 2 may degenerate to a line segment. 

Another indication of the power of Theorem 2 is the following. Let 
Co be the unit circle, n = 1 with G a. concentric circle of radius f i < l ; 
let an arc a (not the whole circle) of Co contain all the arcs OCJ. By a 
conformai map of the universal covering surface of R onto the unit 
circle and application of Theorem 3 extended to the case of an infi­
nite number of arcs, aj, it follows (loc. cit. footnote 2) that in the 
original plane no critical points of u(x, y) lie in the annulus n <r <r\/2; 
a second annulus r%<r<\ free from critical points can also be de­
termined by this method. By Theorem 2, any circle cutting Co 
orthogonally in two points of the complement of a and containing in 
its interior no point of a or of G contains in its interior no critical 
point of u(x, y). In all, these conclusions may leave only a very small 
subregion of R as the portion in which the critical points of u(x, y) lie. 

We continue with a generalization of this result, a further applica­
tion of Theorem 2 : 

THEOREM 4. Let R be a region bounded by the whole of the Jordan 
curve Co, by the whole or part of the Jordan curve G disjoint from Co, 
and by mutually disjoint Jordan arcs or curves C2, G, • • • , Cn in the 
closed interior of the annulus Ro bounded by Co and G ; some or all of 
the latter arcs and curves are permitted to have points in common with 
Ci, but none with Co* Let a finite number of arcs ft, ft, • • • , ft* of G 
be part of the boundary of R and mutually disjoint. Let the function 
u(x, y) be harmonic and bounded in R, and take continuously the 
boundary value zero on C o + f t + f t + • • • +ft» and unity in the re­
maining boundary points of R, except that in points common to the ft 
and C2+ • • • +Cn and in end points of the ft, no continuous boundary 
value is required. 

If œ(z, Co, Ro) denotes the harmonic measure of Co in the point z 
with respect to the annular region J?0, then for constant fi the largest 
region œ(zf Co, Ro) > M = 1/2 which contains no points of C2+ • • • + C n 

contains no critical points of u(x, y). 

Theorem 4 is proved by mapping onto the unit circle the universal 
covering surface of R0, and by applying a slight generalization of 
Theorem 2. We omit the proof. 

We turn now to a generalization of Theorems 2 and 4, in a more 
general situation. Let R be a region bounded by the whole or part of 
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the mutually disjoint Jordan curves, &, C2, • • • , Ck (which together 
bound a region R0) and by mutually disjoint Jordan arcs or curves 
Ck+h ' • • , Cn in the closure of Ro; some or all of the latter arcs or 
curves may have points in common with C1 + C2+ • • • +C&. Let a 
finite number of arcs ai, a2l • • • , am of C1 + C2+ • • • + C * belong 
to the boundary of R and be mutually disjoint. Let the function 
u(x, y) be harmonic and bounded in i?, and take continuously the 
boundary values unity on Ck+i+ • • • +Cn+ai+ • • • +am and zero 
in the remaining boundary points of i?, except that in points common 
to Ci+ • • • +Ck and C*+i+ • • • +Cn and in end points of the ay, 
no continuous boundary value is required. In studying the location of 
the critical points of u(xt y), in order to apply Theorem 2 (in gen­
eralized form), it is natural to map onto the interior of the unit circle 
the universal covering surface of Ro. Any non-euclidean convex 
region in the unit circle containing all image points of the set 
Ck+i+ • • • +Cn+ai+ • • • +am contains all critical points of the 
transform of u(x, y). But here we have a large choice; we may change 
the notation so that any subset of the arcs or curves C&+1, • • • , Cn 

belongs to the set &, C2, • • • , C&; each choice of the subset yields 
a new region Ro, a new conformai map, a new noneuclidean geometry, 
a new application of Theorem 2 (generalized), and a new conclusion. 

Throughout the present note we have studied in detail harmonic 
functions which for a simply connected region Ro take on the values 
zero (on arcs of the boundary of Ro) and unity (on arcs of the 
boundary or curves in Ro). By the same methods one can also study 
harmonic functions which take on the values zero (on arcs of the 
boundary of i?o), unity (on arcs of the boundary or curves in -Ro), 
and minus unity (on arcs of the boundary or curves in Ro) J the results 
generalize those previously obtained by the writer (loc. cit.) and can 
be still further generalized to regions of higher connectivity by a 
conformai map of the universal covering surfaces of such regions. 
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