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hi = h = • • • = bn = 0,0 = 0, P2 = 0, € = 1 of V and VI, 

and 

ai = a2 = • • • = an = 0, a = 0, p = 0, e = 1, X = 1 of VII, 

are due to G. Szegö. 
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This note contains some disconnected remarks on polynomials. 
Let /n(tf)=ü?«i(x—xdf — l^Xi^x2S - • • £xn£l. Denote by 

— l ^ ^ i â • • • â ^ n - i ^ l the roots of ƒ«(#). We prove the following 
theorem. 

THEOREM 1. For alln 

(1) I ƒ . ( - 1) I + I ƒ»(+ 1) I + S I ƒ„<*) I =S 2». 

For n^3 

(2) | ƒ»(- 1) |1/2 + | /n(+ 1) |1/2 + 2 | Wi) |1/2 ^ 2-/2. 

For n^n0(k) 

(3) | ƒ»(- l) I1'* + \M+ l) I1'* + E l fniyi) \llk ^ 2nlk-
» - i 

REMARK. If ^i = ^*+i or — l = y i , + l = y n - i the corresponding sum-
mands clearly vanish. 

Clearly 

I ƒ • ( - l) | ^ (l - *i)2"-1, | Myi) \£\y<- x+i 12W^, 

| / n ( + l ) | S ( l - « . ) 2 - 1 . 

Thus 
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I/.(-i) I+!/.(+i)l +El/.(*)! 
» ' - l 

^ ( ( 1 - *i) + £ (y< - Xi+i) + (1 - Xn) \ 2 - 1 g 2-, 

which proves (1) 
We have by the inequality of the geometric and arithmetic mean 

, , (1 — xi) + (1 — X2) 
I ƒ»(- 1) I1'2 ^ ^ P 2»l>-\ 

\fn(y<)\v>*(Xi+1~Xi)2^, 

l /n(+i)h^ ( 1"X n ) +
2

( 1" a ;"- l )2^. 

Thus we evidently have for w ^ 3 

I ƒ»(- i) I1'2 + 1 ƒ»(+1) I1'2 + E I ƒ.(*) I1'2 ^ 2-/«, 
» = 1 

which proves (2). 
fi(x) =x and/2(#) =# 2 / 2 — 1 shows that (2) is false for n < 3 . Clearly 

equality occurs in (1) and (2) only for ± (1 ±X)n. 
The proof of (3) is more complicated and since the proof does not 

present any particular interest we are just going to sketch it. Let 
fn(x) be the polynomial which maximizes the sum (3). If (3) is not 
true we must have 

2» 
I fn(xo) I = max I fn(x) \ > — • 

But then it is easy to see that x0 does not lie in (1 —e, —1+6) ; with­
out loss of generality we can assume that 1—€<x 0 ^l , and n+o(n) 
of the Xi are in ( — 1 + 5, —1). But then a simple computation shows 
that fn(x) has no roots in (1—€, 1) and thus x0 = l. (This is clear 
since if we move any possible root of fn(x) in (1— e, 1) to — 1, we 
clearly increase the sum (3).) By the same argument we obtain by 
a simple calculation that all the roots of fn(x) have to be in — 1, 
which proves (3) and completes the proof of Theorem 1. 

At present I can not determine the exact value of no(k). 
Let gn(z)=Yli=i 0s—s*)» \z%\ = 1 . Denote by wi, u^ • • • the local 

extremal points of gn(z), tha t is, the points where the vector g„(z) 
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points either towards the origin or away from it. I conjectured that 

i 

Professor Breusch1 proved this conjecture for sufficiently large n. The 
proof is complicated. For small values of n he showed by examples 
that the result is false. 

Let — l = X o < # i ^ • • • ^ x n = xn+i = l. Put co(x)=HîL1 (x—Xi), 
h(x)=cû(x)/ù)(xk)(x—Xk), the fundamental functions of Lagrange 
interpolation. The problem of determining the set for which 

n 

max X) I h(x) \ 

is minimal is still unsolved. I t has been conjectured, but never proved, 
that the minimum is attained for the points for which all the » + 1 
sums 

n 

(4) max J21 h(x) | , i = 0, 1, • • • , », 

are equal. If the Xi are the roots of Tn(x) (the nth Tchebychef poly­
nomial), then a simple computation shows that the sums (4) all equal 

2 
— log » + 0(1). 
7T 

S. Bernstein2 proved that for any —l^Xi^X2^ • • • â t f w ^ l 

n O 

max X I h(x) \ > (1 + o(l)) — log », 

and I proved3 that 
n O 

max E | h(x) | > — log » — c (c absolute constant). 

We consider a slightly different problem. We prove the following 
theorem. 

THEOREM 2. Let — l = # o ^ # i • • • ^ # n ^ # n + i = l . Then f or some i 

(5) max £ I **(*) I < *>l\ 

1 Oral communication. 
2 Bull. Acad. Sci. URSS. Sér. Math. (1931) pp. 1025-1050. 
3 Unpublished. 
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REMARK, n112 in (5) can very likely be improved to c log n. In fact 
it is likely that 

n 

min max ]T)1 h(%) \ 

assumes its maximum when all the sums (4) are equal. 
If, for some i, Xi = Xi+i then (S) is obvious. Assume that x^Xt+i , 

O ^ i ^ w + 1 . Consider the equation XX»I 50*0 = !• The number of 
solutions is not greater than 2n — 2 and X\j x%f * * * , Xn are solutions. 
Thus a simple argument shows that for some i, l^i^n— 1, 

,2 

But then clearly (from Schwartz's inequality) 

]C h(x) < 1 for Xi < x < Xi+i. 

]C | h(x) | < n112 for Xi ^ x ^ x*+i 
fc=i 

which proves Theorem 2. 
In one of his interesting papers Schur4 proves among others the 

following result: Let a0x
n+ • • • +an be a polynomial with integer 

coefficients, all whose roots are in ( — 1 , + 1 ) and are different. Then 
for sufficiently large n, \a0\ >(2 1 / 2 — e)n. We prove the stronger 
theorem : 

THEOREM 3. Let fn(x)=aöxn+ • • • +an be a polynomial with 
integer coefficients and / n ( —1)^0 , / n (0 )^0 , / w ( + l ) ^ 0 . Then, 
| a0 \^2n'2. 

We have (xi, x%t • • • , xn are the roots of fn(x)) 

I ƒ»(-i)ƒ!(())ƒ„(+i)| - ao ofla-^)^U L 

But | ( 1 - 4 ) ^ | ^ 1 / 4 . Thus | a 0 | è 2 n / 2 which completes the proof. 
2 n ( * - l / 2 ) n shows that \a0\ ^ 2 n / 2 is best possible. 

Schur in his proof makes use of the fact that the discriminant of 
fn(x) has to be an integer. If we make use of this fact we easily obtain 
that, for large n, \a0\ > (2 1 / 2 +c) n . On p. 390 of his paper Schur con­
structs a polynomial of degree 2n with 

a = ((1 + 2 ) — (1 — 2 ) ). 

4 Math. Zeit. vol. 1 (1918) pp. 377-402, see p. 389-391. 
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This seems the greatest possible value of | afn) | . 
In the same paper (Theorem XI I I , pp. 397-398) Schur proves 

the following theorem: Let a0 be a given integer, and let fn(z) 
= a0z

n+ - - • +an be a polynomial with integer coefficients the roots 
of which either all have absolute value 1 and are different or all are 
in the interior of the unit circle (in which case multiple roots are 
permitted). Denote these roots by z%, z% • • • , sn. Then 

g l + g2 + . . . + s» <>i/2 
(6) lim sup S i • 

n 2 
Schur conjectures that the limit (6) is 0, and remarks that if ao = l 

this follows from a theorem of Kronecker, which asserts that in this 
case all the Zi are roots of unity. We now prove Schur's conjecture. 

THEOREM 4. Let the Zi be defined as above. Then 

,. Zx + Z2 + • * • + Zn 

hm = 0. 
n 

First we can assume that n tends to infinity (that is, for every n 
there are only a finite number of equations satisfying the conditions 
of the theorem). Also if f(z) has all its root in the interior of the unit 
circle then z2f(z)+znf(z~l) =g(z) has all its roots on the unit circle and 
all are different. Also the sum of the roots of f(z) and g(z) are identical 
(p. 397). Thus it will suffice to consider polynomials having all their 
roots on the unit circle and distinct. 

Therefore the discriminant of D satisfies the inequality 

(7) 1 g D = öo I I (*« - *i) • 

I t follows from a result of Pólya (p. 395) that 

(8) | ƒ(«!, *2, « ' • , Zn) | = I I (*< - **) ^ n\ 

Thus for a t least one z 

(9) n i (*<-**) i ss». 

To prove Theorem 4 it clearly suffices to show that the z» are uni­
formly distributed on the unit circle. Suppose this is not true. Then 
it follows from a result of Fekete5 that there exists a z0, \z0\ = 1 , 
such that 

e Ann. of Math. vol. 41 (1940) pp. 162-173, see pp. 165-166. 
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(10) n i ( * o - * y ) | > ( l + Ci)». 

But then from (9) and (10) 

I / (20 , Si, * ' • , 2 t - l , «<+i • ' • « » ) > ƒ(»!, «2, ' • ' , 2»). 

If Si, s2, • • • , zn are not uniformly distributed we can continue this 
process c%n times, and thus obtain yu y2l • • • , yn, | y»| = 1 , so that 

(1 -f- a)C2n2 

(11) I /(yi, y* • • • , y») | > 1 jf(«i, 22, • • • , zn) |. 

But from (7) and (11) we obtain 

I/(yi, y* • • • , y») | > ( i + < * ) n * - ^ - > ™n 

which contradicts (8) and completes the proof of Theorem 4. 
Szegö6 proved the following theorem : Let M be any closed set in 

the plane. Denote by con(My z0) the maximum of | /n ' ( s0) | for all 
polynomials ƒn(s) of degree n which satisfy |/»0&)| ^ 1 for all z in M. 
Assume that the transfinite diameter of M is positive. Then 

lim con(M, 2o)1/w < oo. 

Fekete7 proved that if z0 is not in Af, lim <an(M, z0)
lln exists and is 

finite if the transfinite diameter of M is positive, and is infinite if the 
transfinite diameter of M is 0. 

Assume now that ZQ belongs to M. The following questions remain 
open: (1) Does lim con(Af, z0)

lln exist? (2) Let the transfinite diameter 
of M be 0. Is lim w»(M, 20)1/w= <*> ?7 

We are going to answer both questions in the negative. In fact we 
prove the following theorem. 

THEOREM 5. Let M be the set consisting of 0 and 1/2*, k = 0 ,1 , 2, • • • • 
Then 

con(M, 0) < cn. 

Clearly M is closed and countable, thus its transfinite diameter is 0. 

LEMMA. Let a, b, d be three real numbers, d — b = b — a. Then if 
\fn(z)\ <lfor a<z<b, 

6 Math. Zeit. vol. 23 (1925) pp. 45-61. 
7 Math. Zeit. vol. 26 (1927) pp. 32^-344. 
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fn(d) < cî/(b - a). 

If a = 0, b = 1 the lemma follows from Szegö's6 result. The general case 
follows by a linear transformation. As a matter of fact it is well known 
that œn(M, d) is given in this case by the Tchebychef polynomial 
belonging to {ay b). 

Now we prove Theorem 5. The equation fl{z) = 1 can have at most 
In real roots. Thus since |ƒ(1/2)*) J < 1 , £ = 0, 1, • • • , we obtain 
that , for some k>n+l, |ƒ»(*)| < 1 for all 1/2*<z<l/2*+ 1 . Thus by the 
lemma 

I /n(0) I < 2 ex < c , 

q.e.d. 
THEOREM 6. Let the set M be defined as follows: n i < w 2 < • • • tend 

to infinity sufficiently fast. M consists of the points 0 and \/2u where 
m^uS2ni+l. Then lim <on(Af, 0)1 /n does not exist. In fact 
lim sup (*)n(M, 0) 1 / n=oo, lim inf con(Jkf, So)1 /n<°°. 

As in Theorem 5 it follows that if | / (1/2U) | < 1 for ni£u£2m+l9 

f(x) a polynomial of degree n^ then œni(M, 0) <cni. Consider f(x) 
= 2 n « + 1 I I (x- l /2*) , Jfegl, 2, • • • , 2»< + l . The degree of ƒ(*) equals 
2ni+2. Also | / (# ) | < 1 for all # in Af, and if ni+i tends to infinity 
sufficiently fast 

(/ '(0))1/2n i+2 > (2n<+1/2 (2ni+1)2)1/2n*+2--* oo 

q.e.d. 

THEOREM 7. Let fn(z) be a polynomial of degree n with real co­
efficients. | /»(s) | < 1 for - l ^ s ^ l . Then if \z0\^l 

\fn(Z0)\ S\Tn(z0)\. 

Equality holds only for fn(z) = ± T(z). 

In case zQ is real this result is well known. 
We are going to prove the following more general result: Let 

|/w(tf»)| ^ 1 where xi~ — 1, Xi, i = l, 2, • • • , # — 1 , are the roots of 
Tn(x) and x n = l . Then for \ZQ\ è l 

(12) |/w(*o)| g | r n ( « o ) | . 

We have {U{x)=o)(x)/uf(x%)(x-x%), œ(x) = (l-x2)T1i (x)) 

n 

fn(zo) = Z) yMxo), [yi\ è 1, y< real. 
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We evidently have for complex numbers A and B, max ( 1-4+51, 
|^4— B\>A. Thus l/wOsOl will be maximal if yi= ±1. A simple 
geometric argument shows that the angle between any two of the 
vectors ( — l)*/»(s0) is less than T/2 (since the interval ( — 1, + 1 ) sub­
tends from ZQ a t an angle not greater than T/2). But then clearly 
|/«(so)| is maximal if 

Mzo) = ± £ ( - i)%(zo) = ± rn(*o). 

Equality clearly occurs only if ƒ (z) = ± T(z). 

COROLLARY. Let |/»(a)| ^ 1 for — l ^ s ^ l , also let fn(z) have real 
coefficients. Then for \ z\ ^ 1, | fn(z) \ < \ Tn(i) \. 

If we do not assume that the coefficients of fn(z) are real it is easy 
to give examples which show that |/n(2)| does not have to be less 
than \Tn(i)\. Trivially \fn(z)\ ^ X X o | M * ) | . But in general 
max l/wOs) | < ]C»-o| M*) I • I c a n n o t a t present determine max \fn(z) \ 
for |« | â l . 

In the same way we can prove that if f(z) = aoZn+ • • • + # „ has 
real coefficients and \f(z)| ^ 1 for — 1 < z ^ 1 then X X o | a A is 
maximal for ƒ(z) = ±Tn(z). Szegö8 proved the following stronger re­
sult: |#2fc| +1a2k+i\ is maximal for f(z) = ± Tn{z). 

SYRACUSE UNIVERSITY 

Oral communication. 


