
THE ESSENTIAL PART OF A SURFACE 
PAUL V. REICHELDERFER 

This paper attempts to place the concept of the essential part of the 
projection of a continuous surface upon a plane in its historical and 
mathematical setting, and to outline the role this concept is playing 
in the solution of the area problem. To that purpose those events most 
closely related to this concept will be sketched, and less relevant facts 
will be suppressed.1 

1. The length of a curve. Consider a continuous path curve C given 
by a representation 

(1.1) C: x = x(u), y = y(u), z = z{u), 0 £ u gj 1, 

where the functions x(u), y(u), z(u) are defined, single-valued, real-
valued, and continuous on the closed unit interval O g w ^ l . I t is 
well known that the length L(C) of C may be defined as the limit of 
the lengths of inscribed polygons which converge to C—if 0=UQ<UI 

< • • • <Ui< • • • <un = l be a subdivision of O ^ t t ^ l , then 

n 

L(C) = lim 22 {[x(ui) - x(ui„!)]2 + [y(ud - yiu^)]2 

( 1 . 2 ) n—•<» i-si 

+ [z(Ui) - z(uM)]*}u\ 

the limit2 being taken with respect to subdivisions of O ^ w ^ l for 
which the maximum value of \ui — Wf-i| for i between 1 and n con­
verges to zero with 1/n. Observe that (1.2) gives an expression for 
the length of the curve C in terms of its representation (1.1), standard 
algebraic operations, and one limit process. 

2. The area of a surface. Consider a continuous path surface S 

An address delivered before the Ames meeting of the Society on November 30, 
1946, by invitation of the Committee to Select Hour Speakers for Western Sectional 
Meetings; received by the editors November 20, 1946. 

1 A list of papers closely related to the facts to be presented in the sequel is in­
cluded at the end of this paper. Numbers in brackets refer to this bibliography. For 
an exhaustive treatment of the concepts of length and area and an extensive bibliog­
raphy upon the subject, the reader should consult Radó [4]. This volume of the Col­
loquium publications is now in the process of being published. The writer had the 
privilege of reading the manuscript. 

2 Of course, it is necessary to discuss the existence of this limit and its independence 
of the representation chosen for C. See Radó [4, III. 3]. 
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given by a representation8 

(2.1) S: % = x(u, v)y y = y(u, v), z = z(ut v), 0 ^ u, v ^ 1, 

where the functions x(u, v), y(u, v), z(u, v) are defined, single-valued, 
real-valued, and continuous on the closed unit square 0 ^ W , Ü ^ 1 . Be­
fore the twentieth century mathematicians generally defined the area 
of S in a way analogous to that for the length of a curve—namely, as 
the limit of the areas of inscribed polyhedra which converge to S. In 
1880 H. A. Schwarz inscribed sequences of polyhedra in a right circu­
lar cylinder to show these interesting facts (see Schwarz [ l ] ) : there 
are sequences of polyhedra inscribed in the cylinder and converging 
to it whose areas have no limit ; if r be any real number not less than 
the accepted value for the area of the surface of the cylinder, there are 
sequences of polyhedra inscribed in the cylinder and converging to it 
whose areas converge to r; in particular there are sequences of poly­
hedra inscribed in the cylinder and converging to it whose areas con­
verge to plus infinity. 

3. The Lebesgue area. Stimulated by Schwarz's discovery, many 
mathematicians, including Peano, Lebesgue, and Geöcze (see Radó 
[2, 4]), set forth definitions for the area of a continuous surface. 
Lebesgue's definition has gained wide acceptance, and is used in the 
sequel (see Lebesgue [ l]) . Given a continuous path surface 5 as in 
(2.1), consider a sequence of polyhedra Pn—not necessarily inscribed 
in S—which converge to «S. If E(Pn) denotes the elementary area of 
the polyhedron Pn—that is, the sum of the areas of its triangular 
faces—then lim inf E(Pn) is an upper bound for the Lebesgue area 
L(S) of 5, and L(S) is defined to be the greatest lower bound of all 
the upper bounds obtained in this way.4 

4. The area problem. The reader's attention is invited to the follow­
ing facts: (i) Given a continuous path curve C as in (1.1), consider a 
sequence of polygons pn—not necessarily inscribed in C—which con­
verge to C. If e(pn) denotes the elementary length of the polygon 
pn—that is, the sum of the lengths of its linear segments—then 
lim inf e(pn) is an upper bound for the length L{C) of C, and L(C) is 
the greatest lower bound of all the upper bounds obtained in this way 
(see Radó [4, III. 3]). Thus Lebesgue's definition for the area of a 
surface is analogous to a possible definition for the length of a curve. 

3 For a thorough discussion of the representations for continuous curves and sur­
faces, see Radó [4, II. 3]. 

4 Again, the independence of L(S) upon the representation chosen for S must be 
discussed. See Radó [4, V. 2]. 
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(ii) The polyhedron Pn is not required to be inscribed in the surface 5; 
this permits one to prove that the Lebesgue area L(S) is a lower semi-
continuous functional of S—that is, if Sn be any sequence of continu­
ous path surfaces converging6 to S, then lim inf L(Sn) is an upper 
bound for L(S). (iii) In all cases where an area for a given surface has 
been assigned and widely accepted, the Lebesgue area agrees with the 
accepted value—in particular, the Lebesgue area L{P) of a poly­
hedron P is equal to its elementary area E(P). (iv) While the defini­
tion of the Lebesgue area L(S) of a continuous surface S guarantees 
the existence of a sequence of polyhedra Pn such that the Pn converge 
to S and the elementary areas E(Pn) converge to L(S), it gives no clue 
as to a way of constructing such a sequence, (v) Let there be assigned 
in any manner whatsoever a real number A(S) to every continuous 
path surface S so that the following three conditions are fulfilled: 
A (S) is a lower semi-continuous functional of 5; for every polyhedron, 
P, A(P) has the same value as the elementary area E(P); for every 
continuous surface 5 there exists a sequence of polyhedra P„ such that 
the Pn converge to S and the A(Pn) converge to A(S). Then for every 
continuous surface S,A(S) must have the same value as the Lebesgue 
area L(S). (vi) The Lebesgue area of a surface S is not directly ex­
pressible in terms of its representation (2.1) using standard operations 
(cf. §1). Hence one of the outstanding problems is the following: 

AREA PROBLEM: Given a continuous path surface S as in (2.1), ex­
press its area in terms of its representation (2.1), using standard opera­
tions. 

5. A solution to the area problem for a non-parametric surface. In 
one important special case—the so-called nonparametric case—the 
area problem is solved. Suppose the continuous path surface S has a 
representation of the form (see Radó [4, V. 3]) 

(5.1) S: x = #, y = v, z = z(u> v), 0 ^ , ^ 1. 

Under no additional hypotheses, Radó has shown (see Radó [l]) that 
L(S) may be given in terms of the representation (5.1) and standard 
operations as follows. Consider any sequence of subdivisions Dn of 
the unit square 0^u,v^l into oriented rectangles r\u'i^u^u", 
vr-^vSv" for which the maximum of the diameters of the rectangles 

6 A sequence of continuous surfaces 5» converges to a continuous surface S given 
as in (2.1) if the Sn admit of representations Sn:# = #»»(#, v), y~yn(ti, v), z—zn(u, v), 
O^w, w^l , » = 1, 2, • • • , such that #», yn, zn converge uniformly on 0^« , v^l to 
x, y, z respectively. For a treatment of the concept of convergence for continuous 
curves and surfaces, see Radó [4, II. 3]. 
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in Dn converges to zero with l/n. Then6 

L(s) = lim Z {[" f * I z(u", v) - z(u', v) \ <fol 

r- /• u" -|2 

+ I I *(«• v") - z(u, v') I du 

\ 1/2 

+ [{u" - 0 ( Ï > " - Z / ) ] 2 > . 

6. An expression for the length of a curve. One approach to the 
area problem in case S is any continuous path surface is to investi­
gate various possible expressions for the length of a curve, expecting 
that these may afford a clue to a method for attacking the area prob­
lem. An expression for the length of a curve which has been especially 
fruitful will now be considered (see Banach [l]). Let Cbe a continu­
ous path curve given by the representation (1.1). The projection of C 
on the x-axis is then represented by x = x(u)y O ^ w ^ l . For each 
interval ilu'^u^u", where 0^-u'<u" ^ 1 , and for each point #o, 
let N{XQ, i) denote the number—possibly zero, possibly plus infinity 
—of points UQ in i such that x(uo)=:Xo. Then for each interval i, 
N(x, i) is a non-negative measurable function of x which is zero out­
side of a certain interval, and7 fN(x, i) may be regarded as the length 
of the one-dimensional curve represented by # = #(w)> uf ^u^un— 
in fact, fN(xt i) is equal to the total variation of x over the interval 
i (see Radó [4, III. 2]). Functions N(y, i), N(z, i) are defined similarly 
and have analogous properties. Now let Dn be any sequence of sub­
divisions of the interval 0 S u == 1 into intervals iiu'^u^u" for which 
the maximum of the lengths of the intervals in Dn converges to zero 
with l/n. Then8 

L(C) = Hm E {[ ƒ#(*, O] + [ $N{y, *)] 

6 For other possible solutions of the area problem in the nonparametric case, see 
Radó [4, V. 3]. 

7 Let ƒ be any interval on the #-axis such that N(x, i) is zero for x not in I. If 
N(x, i) is summable on I, then fN(x, i) denotes the Lebesgue integral of N(x, i) on I; 
if N(x, i) is not summable on I, then fN{xt i) is defined to be plus infinity. Clearly 
fN(x, i) is independent of the choice of 7, so long as N(x, i) is zero for x not in I. 

8 For other possible expressions for L{C) see Radó [4, III. 3]. 
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For purposes of comparison, another formula for L(C) is presented. 
If D be the generic notation for a subdivision of the interval 0 ^ u g 1, 
then 

(6.2) 

L(C) = l.u.b. £ { [ fax, Ï ) ] + [ fay, * ) J 

+ [ƒ»(,«]}'", 
the least upper bound being taken with respect to all subdivisions D. 
Formula (6.1) is preferable to (6.2) because it states that L(C) may be 
computed as the limit of sums over any sequence of subdivisions Dn 

of O ^ w ^ l for which the maximum of the lengths of the intervals in 
Dn converges to zero with 1/n. 

7. An expression for the area of a surface. Now let 5 be a con­
tinuous path surface given by the representation (2.1). The projec­
tion of S on the #;y-plane is then represented by 

x = x(u, v), y = y(u, v), 0 â u, v g 1. 

For each set E in Ö ^ u , v g 1, and for each point (xo, ̂ o), let N(xo, yo, E) 
denote the number—possibly zero, possibly plus infinity—of points 
(uo, Vo) in E such that x(u0, Vo) =#o, y(uo, Vo) —yo- If one tries to parallel 
the reasoning used to obtain (6.1), one encounters trouble—the 
functions N(x, y, E) are generally too large. The following example 
illustrates the difficulty. Let S be a Peano curve given by 

S: x = x(u)y y = y(u), z = 0, 0 £* ft, v £* 1, 

which fills the unit square O^x, y^l. If 6 is regarded as a path sur­
face, and Q denotes the unit square O^w, » ^ 1 , it is clear that 
N(x, yy Q) is everywhere plus infinity for O^x, y^l. On the other 
hand, it is easily seen that the Lebesgue area L(S) is zero (see §3). 
So there is no hope for a formula for the Lebesgue area analogous to 
(6.1) for the length of a curve. 

8. The essential multiplicity with respect to a region. A study of 
the works of Geöcze (see Geöcze [l, 2, 3, 4]) led Radó (see Radó 
[2, 3]) to replace the function N(x, y, E) defined in §7 by a generally 
smaller function which may be described as follows. Let 8î be a 
bounded finitely connected Jordan region,9 and let x(u, v), y(u, v) be 

9 A region is a connected open set plus its boundary. A bounded finitely connected 
Jordan region is a bounded region whose boundary consists of a finite number of 
simple closed curves. 
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two functions which are defined, single-valued, real-valued, and con­
tinuous on 9Î. These determine a continuous transformation T from 
9Î in the wp-plane into the x^-plane, 

(8.1) T: x = x(u, v), y = y(u, v), (u, v) G 9Î. 

Observe that T may be regarded as a representation for a flat con­
tinuous surface—that is, a continuous surface lying in the xy-plane 
(see §2). For any set E in 9?, the function N(x, yy E) defined in §7 will 
be more completely denoted by N(x, y, T, E)—it is known as the 
crude multiplicity of the point (x, y) under the transformation T 
with respect to the set E (see Radó and Reichelderfer [ l ] , Radó [4, 
IV. l ] ) . If T* be any other continuous transformation defined on 9Î, 

TV x = x*(u, v), y = y*(u, v), (u, v) G % 

then the distance between T and !T* on 9t is the least upper bound of 
the distances between the points [x(u,v),y(u,v)] and [ff*(w, v), y*(u, v)] 
for (w, v) in 9Î. If (xo, yo) be any point in the :ry-plane, the essential 
multiplicity K(X0, yo, T, 9t) of (x0, yo) under T with respect to 9t is 
defined as follows. K(X0, yo, T, 9Î) has the non-negative integral value 
k if (i) all transformations T* sufficiently close to T have a crude 
multiplicity N(x0, yoy JT*, 9Î) not less than k, but (ii) there are con­
tinuous transformations T# arbitrarily close to T for which the crude 
multiplicity N(xo, yo, T#, 9?) is exactly k. K(XO, yo, T> 9î) is set equal 
to plus infinity if for every positive integer k all transformations T* 
sufficiently close to T have a crude multiplicity N(xo, yo, 2"*, 9t) not 
less than k (see Radó and Reichelderfer [ l ] , Reichelderfer [2]). 
Clearly the essential multiplicity K{X, y, T, dt) never exceeds the 
crude multiplicity N(x, y, T, 9Î)—in fact,10 if 9Î0 denotes the set of 
interior points of 9Î then K(X, y, T, dt) cannot exceed N(x, y, T, 91°). 
The essential multiplicity K(#, y, T, 9Î) is a lower semi-continuous 
function of (x, y)—given any sequence of points (xn, yn) converging 
to a point (xo, yo), it follows that lim inf K(xn, yn, T, 9Î) is not less than 
K(#O, yo, T, 9î). The essential multiplicity K(X, y, T, 9Î) is a lower 
semi-continuous functional of T—given any sequence of continuous 
transformations Tn defined on 9? and converging to a continuous 
transformation To on 9t, it follows that lim inf K(X, y> Tn, $t) is not 
less than K(X, y, To, 9Î). 

9. An intrinsic characterization for the essential multiplicity. If the 
essential multiplicity K(#, y, T, 9t) defined in §8 is to be used to solve 

10 For a discussion and proof of the properties of the essential multiplicity, see 
Radó and Reichelderfer [l], or Radó [4, IV. l ] . 
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the area problem (see §4), it is clear that one must find a characteriza­
tion—that is, an equivalent definition—for K(X, y, T> dt) in terms of 
the continuous transformation T alone (see (8.1)). Such an intrinsic 
characterization has been found (see Radó and Reichelderfer [ l ] , 
Radó [4, IV. l]), and will be described presently. If Cbe any simple 
closed curve in 9î its image C under J1 is a continuous closed curve in 
the #;y-plane. Now if (xo, yo) be any point not on C, the angle which 
the vector with end points (x0, y0) and [x(u, v), y(u, v)], (u, y )£C , 
makes with a fixed direction has an algebraic change of the form 2irn 
as (u, v) traverses C once, where n is an integer depending only upon 
(#o, ;yo), T, C, and the direction in which C is traversed. Let r be any 
bounded finitely connected Jordan region in 9Î; it is bounded by a 
finite number of simple closed curves Co, C\, • • • , Cm (see §8) ; denote 
by Co, Ci, • • • , Cm the respective images of these curves under T. 
Let (#o, yo) be any point of the rry-plane not on any one of the con­
tinuous curves Co, Ci, • • • , Cm, and let fti denote the integer asso­
ciated with (xoy yo), T, d as (u, v) traverses C* in the positive sense 
relative to r, in the manner just described. The index fx(xo, yo, T, r) 
is defined as the sum no+fti+ • • • -\-nm (see Radó [4, II . 4]). Given 
any point (xo, yo) in the x^-plane, let T~~l(xo, yo) denote the set of all 
points (u0, Vo) in r for which x(uo, yo)=Xo, y(u0, Vo)~yo- The con­
tinuity of the transformation T insures that T~*l(zo, yo) is a closed set, 
which may be empty. If T~l(xo, yo) is not empty, let <r denote any com­
ponent—a, maximal connected subset—of T~~l(xo, yo)- Then <r is 
termed essential if in every neighborhood of <r in 91 there exists a 
finitely connected Jordan region r containing <r in its interior and such 
that (xo, yo) does not lie on the image under T of any one of the simple 
closed curves bounding r and the index ju(#o, yo, T, x) is not zero; 
otherwise a is not essential. Observe that the property of being an 
essential component of T~~l{xo, yo) is a local property—if T* is any 
continuous transformation defined on 9t which is identical with T in 
a neighborhood of cr, then cr is also a component of T*l(xo, yo), and <r 
is an essential component of 7V1 (#o, ^o) if and only if a is an essential 
component of T~l(xo, yo)* I t is proven that for any point (x0, yo) in 
the #3>-plane, the essential multiplicity K(XO, yo, T, 9Î) is equal to the 
number of components of the set T~l(xo, yo) which are essential (see 
Radó and Reichelderfer [ l ] ; Radó [4, IV. l ] ) . Thus K(X, y, T, 9Î) may 
be defined in terms of the transformation T alone. 

10. The essential multiplicity with respect to a domain. In order 
to use the essential multiplicity to effect a solution of the area prob­
lem, it seems necessary to have the concept defined when the con­
tinuous transformation is defined over a domain—a connected open 
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set. Let O be any bounded domain in the m/-plane, and let x(u, v), 
y(u, v) be two functions which are defined, single-valued, real-valued, 
bounded, and continuous on O—nothing is assumed about the be­
havior of these functions, or even their definition, on the boundary of 
D. These determine a bounded continuous transformation T from O 
in the w-plane into the ary-plane, 

(10.1) T: x = x(ut v), y = y(u, v), (u, v) G D. 

Now there are sequences of finitely connected Jordan regions 9în in 
V such that any given closed set in O is contained in 9în for all n suffi­
ciently large—such sequences are said to fill up O from the interior 
(see Radó and Reichelderfer [ l]) . For each value of n, consider the 
continuous transformation 

Tn: x = x(u, v), y = y(u, v), (u, v) G 3tn. 

For each point (xo, yo) in the xy-plane the essential multiplicity 
K(XO> yo, Tn, 9?n) has been defined in §8. As n tends to infinity, it is 
shown that the numbers K(XO, yo, Tn, 9tn) have a limit k—this limit be­
ing either a non-negative integer or plus infinity. Clearly k is inde­
pendent of the choice of the sequence of Jordan regions 9?w which 
fill up © from the interior. The essential multiplicity K(XO, yo, Ty D) 
of (xoy yo) under T with respect to D is defined to have this value k. 
From the intrinsic characterization of K(XO, yo, Tn, 9în) described in 
§9, it follows easily that K(XO, yo, T, £>) is equal to the number of 
components of the set11 T~l(xo, yo) which are essential (see Radó and 
Reichelderfer [ l ] ; Radó [4, IV. l ] ) . Thus K(X, y, T, O) may be de­
fined in terms of the transformation T alone. Further, K(X, y, T} D) 
is lower semicontinuous with respect to both (x, y) and T (cf. §8). 

11. A comparison of the definitions for the essential multiplicity' 
If one compares the definition of the essential multiplicity K(X, y, Ty O) 
when the range of T is a domain (see §10) with the definition of the 
essential multiplicity K(X, y, T, 9t) when the range of T is a Jordan 
region (see §8), a question naturally arises. It is clear that the defini­
tion for K(X, y, Tf D) might have been made, without using the defini­
tion for the essential multiplicity with respect to Jordan regions, in a 
way completely analogous to that for K(X, y, T, 9Î) in §8. Are these two 
possible definitions equivalent, or are two basically different ideas 
involved here? Let T be a bounded continuous transformation as in 
(10.1), and let (x0, yo) be any point in the #;y-plane. If k be any non-

11 As in §9, T~X{XQ, y0) denotes the set of all points (u0f v0) in O such 
that x(uo, VQ) ~XQ, y(u0, v0) =»y0. 



19471 THE ESSENTIAL PART OF A SURFACE 853 

negative integer not greater than K(#O, JO, T, D), it is clear from the 
definitions of the essential multiplicities in §§8 and 10 that all con­
tinuous transformations !T* sufficiently close to T on D have a crude 
multiplicity iV(x0, Jo, 2"*, D) not less than k. But if K(X0, jo, T, D) 
has the value k, do there exist continuous transformations T# defined 
on O and arbitrarily close to T on D for which the crude multiplicity 
N(x0, jo, T#, D) is exactly &? In view of what one is trying to do— 
namely, to replace the crude multiplicity of a point (xo, jo) under a 
continuous transformation J1 by a generally smaller multiplicity 
which has significance (cf. §§7, 8), this question gains importance. It 
has recently been answered in the affirmative (see Reichelderfer [2]) 
—given an arbitrary positive number €, the continuous transforma­
tion T has been modified to yield a continuous transformation T# 
defined on V whose distance from T on V is less than e, and for which 
the crude multiplicity N(XQ> jo, T#, ®) is equal to the essential 
multiplicity K(#0, JO, T, O). Thus the definition for the essential 
multiplicities as given in §§8 and 10, though differently phrased, are 
basically the same. 

12. A measure for the essential part of a surface. Again, let T be 
a continuous transformation defined over a bounded finitely con­
nected Jordan region 9Î (see §8). Let V be any domain in 9Î, and con­
sider the bounded continuous transformation (cf. §10) 

(12.1) T ( D ) : x = x(u, v), y = y(u, v), («, v) G V. 

For each point (#0, Jo) in the #j-plane, K(XQ, JO, T, (D), O)—denote 
it simply by K(#0, JO, T, D)—is equal to the number of components of 
r_1(xo, Jo) which lie in O and are essential (see §10). Now K(X, J, ï \ D) 
is a non-negative measurable function of (x, j ) which is zero outside of 
a certain rectangle, and12

 //K(^C, J , I \ C) may be regarded as a meas­
ure for the essential part of the flat continuous surface represented 
by (12.1) (see §§6, 8). 

13. A partial solution to the area problem. Now consider a con­
tinuous path surface S given by the representation (2.1), and suppose 
the Lebesgue measure L(S) of 5 is finite (see §3). Under these hy­
potheses, an expression for L(S) analogous to that for the length of a 
curve given in (6.2) is now described. Let 

12 Let R be any rectangle in the rry-plane such that K(X, y, T, O) is zero for (x, y) 
not in R. If K(X, y, T ,0) is summable on R, then fftc(x, yt !T,D) denotes the Lebesgue 
integral of K(X, y, T, O) on R; if K(X, y, T, G) is not summable on Rt then 
//K(X, y, r , 0 ) is defined to be plus infinity. Clearly JJK(X, y, T ,0) is independent of 
the choice of R, so long as K(X, y, !T,0) is zero for (x, y) not in R. 
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Tx: y = y{u, v), z = z{u, v), 0 ^ u, v ^ 1; 

Tv: z = z(u, v), x = x(u, v)y 0 ^ ut v ^ 1; 

Tz: x = x(u, v), y = y(u, v), 0 ^ u, v ^ 1, 

be representations for the flat continuous surfaces obtained by pro­
jecting the representation for S upon the coordinate planes yz, zx, xy 
respectively. If K be the generic notation for a finite system of dis­
joint domains O in O^u, v^l, then13 

£ ( 5 ) - L u . b ^ { [ ƒ ƒ « ( * *TmO)] 

(13.1) + [ ƒ ƒ * ( * , * , Z\, €>)] 

[ƒƒ *(*,y' r-°)]} ' + 
the least upper bound being taken with respect to all finite systems 
K of disjoint domains in 0 ^ u, v S1. Observe that the essential multi­
plicity functions described in §§8-10 play the role of the crude 
multiplicity functions in §6. It is not yet possible to describe a se­
quence of finite systems Kn of disjoint domains such that L(S) is the 
limit of sums of the above radical over the Kn—that is, so that (13.1) 
may be replaced by a formula analogous to (6.1)—although such a 
sequence of Kn must exist. Nor is it possible to assert that the expres­
sion in the right member of (13.1) must be plus infinity if the Leb-
esgue area L{S) is plus infinity, although it has been shown that the 
expression in the right member of (13.1) cannot then be zero.14 
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