
NOTE ON POWER SERIES 

MAX A. ZORN 

1. The problem. The following question was raised by Bochner. 
Let X / K M Ç V be a power series with complex coefficients, such that 
substitution of convergent power series X a ^ t f * and X)f j8,-f *' for £ and 
7] produces always a convergent power series in f, Is the double series 
2/**'*£V convergent? 

The answer is yes; we present a proof which presupposes from 
function theory only the Cauchy estimate for the coefficients of 
polynomials in a complex variable: 

(c) |Y*r?|£(klHro|)sup I D T A 
We note tha t this estimate is also valid in certain types of fields 

with non-Archimedian valuations, namely, those for which the values 
are dense and the index is infinite; this was shown by Schoebe in [ l ] . 1 

2. Homogeneous polynomials. We denote a vector (£, 77) by x and 
introduce as the norm \\x\\ of x the maximum of |£ | and |r?|. A 
complex Banach space results which, as a complete metric space, is 
of the second category with respect to itself. We then consider 
homogeneous polynomials P(x) =y^A^.k^naikèivkî it is clear that 
•P(r#) = fw-P(#)> that P(x+Çxo) is a polynomial in f, and that P is a 
continuous function of x. 

The following three lemmata are immediate consequences of the 
estimate (C). 

(2.1) LEMMA. If \P(x)\^M for l U l ^ f , then l o ^ y l £M for 

|€|.M*r. 
(2.2) LEMMA. \P(X)\ g ( | f | =1) sup | P ( * + £ * 0 ) j . 

This special case of the principle of the maximum is a special case 
of (C), applied to the constant term of P(x+Çxo), considered as a 
polynomial in f. I t is used in the proof of (2.3). 

(2.3) LEMMA. If \P(x)\ g M for \\x-x0\\ gf , then \P(x)\ ^M for 

ll*Mr. 
PROOF (compare [2, p. 590]): \P(x)\ ^ ( I H =1) sup |P ( f*o+*) | 

= ( | r | =1) sup i P f o + r 1 * ) ! £(H*i-*o | | â | |* | | ) sup \P(Xl)\. 
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3. Proof of the theorem. We may now dispose of the problem 
by proving a slightly stronger result. 

(3.1) THEOREM. If the substitution £ = a£, f?=j8f produces from 
X/***£V always a power series with a nonvanishing radius of con­
vergence then the series £] | a*&£V| converges for sufficiently small \%\ 
and \rj\. 

PROOF. The result of the substitution is, with (a, (3) = a, 

n*=0 \ i+k*=n / 0 

Now let 8 be a complex number2 for which 0 < | ô| < 1 ; there will exist, 
for every vector a, an integer m such that ^Pn(a)(5m)n=]T}Pn(a.Sw) 
converges. We say that the set D of the vectors x for which ^Pn(x) 
converges is of the second category. For every vector is in one of the 
sets 8~"m£>; if D were of the first category, the sets ö~mD and there­
fore the whole space would be of the same character. 

By virtue of the continuity of the functions Pn there will exist 
(compare [3, p . 19]) a sphere I X "^"XQ SP, p > 0 , and an M such that 
| Pn(x) | ^ M holds in it for all n. By Lemma (2.3), the same inequality 
is valid for ||x|| g p ; therefore, |PW(#)| SM/2n will be true8 for 
IHi Sp/2> By Lemma (2.1) we have, for | § | , | rj\ Sp/2, the inequalities 

| ctikkW | S M/2* = M/2*+fc, 

which establish the absolute convergence of the double series. 

4. Comments. The main point of our arrangement was the weaken­
ing of the premise; this procedure was possible essentially because we 
worked with the complex numbers. I t would be interesting to know 
whether the original conjecture holds in the real case. 
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2 The introduction of the powers of a number in the place of the integers is a 
concession to the non-Archimedean case and otherwise not relevant. 

8 This inference can also be made in the non-Archimedean case, provided the 
valuation is dense. 


