MEAN VALUES OF PERIODIC FUNCTIONS

PAUL CIVIN

Let L^p denote the class of complex measurable functions of period 2π for which $M_p(f) < \infty$, where

(2)
$$M_{\infty}(f) = \underset{0 \leq x \leq 2\pi}{\text{ess. sup}} | f(x) |.$$

Let $K_{m,p}$ denote the subset of L^p whose elements, f(x), have a Fourier series of the form

(3)
$$\sum_{n=m}^{\infty} (a_n \cos nx + b_n \sin nx) \qquad (m \ge 1).$$

The functions of $K_{m,p}$ and their Fourier series (3) are transformed by the real number δ and the sequence of real numbers $\lambda = \{\lambda(n)\}$ into the series

(4)
$$\sum_{n=m}^{\infty} \lambda(n) \left\{ a_n \cos\left(nx + \frac{\delta\pi}{2}\right) + b_n \sin\left(nx + \frac{\delta\pi}{2}\right) \right\} \\ = \sum_{n=m}^{\infty} \lambda(n) \left\{ \left(a_n \cos\frac{\delta\pi}{2} + b_n \sin\frac{\delta\pi}{2}\right) \cos nx + \left(b_n \cos\frac{\delta\pi}{2} - a_n \sin\frac{\delta\pi}{2}\right) \sin nx \right\}.$$

A slight modification of the well known result¹ [5, pp. 100 ff.]² for the case in which $\delta = 0$ shows that if

(5)
$$\sum_{n=m}^{\infty} \lambda(n) \cos \left(nx - \frac{\delta \pi}{2} \right) = \sum_{n=m}^{\infty} \lambda(n) \left\{ \cos \frac{\delta \pi}{2} \cos nx + \sin \frac{\delta \pi}{2} \sin nx \right\}$$

Presented to the Society, November 30, 1946; received by the editors December 16, 1946.

¹ Although the convention is adopted in *Trigonometrical series* that f(x) is real, the results of the sections of *Trigonometrical series* to which reference is made in this note hold for complex f(x).

² Numbers in brackets refer to the bibliography at the end of the paper.

is a Fourier or even a Fourier-Stieltjes series then (4) is the Fourier series of a function of L^p , $1 \le p \le \infty$. Throughout the sequel it is assumed that (5) is a Fourier series. Series (4) is therefore the Fourier series of a function $g(x) \in L^p$ and is of the form of (3), hence $g(x) \in K_{m,p}$. The transformation determined by the number δ and the sequence λ is thus a transformation of $K_{m,p}$ onto itself.

The objective of the present note is to establish an inequality between the means $M_p(f)$ and $M_p(g)$ which holds for all $f(x) \in K_{m,p}$. For the essentially bounded case this has been done by B. v. Sz. Nagy [3], and for completeness the result is stated as a lemma.

LEMMA 1 [Sz. Nagy]. If $f(x) \in K_{m,\infty}$, then (4) is the Fourier series of a continuous function $g(x) \in K_{m,\infty}$ and

(6)
$$M_{\infty}(g) \leq A(\lambda, \delta, m) M_{\infty}(f),$$

where $A(\lambda, \delta, m)$ is a function only of the indicated variables and not of the particular $f(x) \in K_{m,\infty}$.

The notation $A(\lambda, \delta, m)$ will be used throughout the sequel to denote the smallest possible function which will satisfy (6) for all $f(x) \in K_{m,\infty}$.

LEMMA 2. If $f(x) \in K_{m,2}$, then (4) is the Fourier series of a function $g(x) \in K_{m,2}$ and

(7)
$$M_2(g) \leq \Lambda(m) M_2(f),$$

where $\Lambda(m) = \max_{m \leq n} |\lambda(n)|$.

The Riesz-Fischer theorem asserts that (4) is the Fourier series of a function $g(x) \in L^2$ and that

$$M_{2}(g) = \left\{ \pi \sum_{n=m}^{\infty} (\lambda(n))^{2} (|a_{n}|^{2} + |b_{n}|^{2}) \right\}^{1/2}$$

$$\leq \Lambda(m) \left\{ \pi \sum_{n=m}^{\infty} (|a_{n}|^{2} + |b_{n}|^{2}) \right\}^{1/2} = \Lambda(m) M_{2}(f).$$

If $\Lambda(m) = |\lambda(r)|$ $(r \ge m)$, then $f(x) = \cos rx$ gives equality in (7). It is now possible to state the principal theorem.

THEOREM 1. If $f(x) \in K_{m,p}$, then (4) is the Fourier series of a function $g(x) \in K_{m,p}$ and

(8)
$$M_p(g) \leq \Lambda^{2/p}(m) A^{(p-2)/p}(\lambda, \delta, m) M_p(f)$$
 $(2 \leq p < \infty),$

(9)
$$M_p(g) \le B_p \Lambda^{2/p'}(m) A^{(p'-2)/p'}(\lambda, -\delta, m) M_p(f)$$
 $(1$

where $\Lambda(m)$ and $A(\lambda, \delta, m)$ are defined in Lemmas 1 and 2, B_p is a constant depending only on p and not on the particular $f(x) \in K_{m,p}$, and p' = p/(p-1).

The transformation of f(x) into g(x), or of series (3) into series (4), is a linear transformation of $K_{m,2}$ onto itself, and also of $K_{m,\infty}$ onto itself. The direct application of an interpolation scheme for L^p fails in the attempt to establish (8) since the space $K_{m,p}$ is a nondense linear subspace of L^p . However, the proof of the interpolation result for L^p as given in *Trigonometrical series* [5, p. 198 ff.] carries through for the space $K_{m,p}$ on the basis of the following lemma.

LEMMA 3. The step functions of $K_{m,p}$ are dense in $K_{m,p}$ in the metric of $L^p(1 .$

The step functions of $K_{m,p}$ are those functions of $K_{m,p}$ which assume only a finite number of values and assume each of these values on a finite sum of intervals in $(0, 2\pi)$. Suppose $f(x) \in K_{m,p}$ and η is a positive number. The density of the continuous functions of L^p requires the existence of a continuous function $h(x) \sim c_0/2 + \sum_{n=1}^{\infty} (c_n \cos nx + d_n \sin nx)$ such that $M_p(f-h) < \eta$ and $|c_0|/2 + \sum_{n=1}^{m-1} (|c_n| + |d_n|) < \eta$. The function $k(x) = h(x) - c_0/2 - \sum_{n=1}^{m-1} (c_n \cos nx + d_n \sin nx)$ is therefore a continuous function of class $K_{m,p}$ and $M_p(f-k) \leq M_p(f-h) + \eta(2\pi)^{1/p} < 8\eta$. Hence the continuous functions of $K_{m,p}$ are dense in $K_{m,p}$. It is sufficient therefore to show that the continuous functions of L^p can be approximated uniformly by step functions of $K_{m,p}$.

Consider first a continuous $f(x) \in K_{1,p}$. For any positive η , there is a step function s(x) such that $|f(x)-s(x)| \leq \eta$ for all x. If $c=(1/2\pi)\int_0^{2\pi}s(x)dx$, then since $\int_0^{2\pi}f(x)dx=0$, $|c| \leq (1/2\pi)\int_0^{2\pi}|s(x)-f(x)|dx \leq \eta$. The step function t(x)=s(x)-c is therefore in $K_{1,p}$ and $|f(x)-t(x)| \leq 2\eta$.

Suppose next that it has been demonstrated that the continuous functions of $K_{r,p}$ can be uniformly approximated by step functions of $K_{r,p}$ for $1 \le r < m$. Since $K_{r,p} \supset K_{s,p}$ if r < s, any continuous function of $K_{m,p}$ can be uniformly approximated by step functions whose Fourier coefficients of order less than (m-1) vanish. Hence if f(x) is a continuous function of $K_{m,p}$ and η is a positive number, there is a step function $s(x) \in K_{m-1,p}$ such that $|f(x) - s(x)| < \eta$ for all x. Suppose that $c = (1/4) \int_0^{2\pi} s(x) \cos(m-1)x dx$ and $d = (1/4) \int_0^{2\pi} s(x) \sin(m-1)x dx$. Since $f(x) \in K_{m,p}$, both $|c| < 2\eta$ and $|d| < 2\eta$. Suppose the function t(x) = s(x) - c sgn $\cos(m-1)x - d$ sgn $\sin(m-1)x$, where $\sin u = 0$ if u = 0 and $\sin u = u/|u|$ if $u \ne 0$. It can be shown by direct calculation that the step function $t(x) \in K_{m,p}$. Since $|f(x) - t(x)| \le |f(x) - s(x)|$

 $+ |c| \sin \cos (m-1)x| + |d| \sin \sin (m-1)x| < 5\eta$, the function t(x) gives the desired uniform approximation.

In order to establish (9), it is first noted [5, p. 105] that since $g(x) \in L^p$,

(10)
$$M_{p}(g) = \sup \left| \int_{0}^{2\pi} g(x) \overline{h(x)} dx \right|$$

with the supremum taken over all h(x) for which $M_{p'}(h) \le 1$. Hence if η is a positive number there is an h(x) for which

$$M_{p'}(h) \leq 1$$

and

(11)
$$M_{p}(g) - \eta \leq \left| \int_{0}^{2\pi} g(x) \overline{h(x)} dx \right|.$$

Suppose that $h(x) \sim r_0/2 + \sum_{n=1}^{\infty} (r_n \cos nx + s_n \sin nx)$ and that $h_m(x) \sim \sum_{n=m}^{\infty} (r_n \cos nx + s_n \sin nx)$. A double application of Parseval's relation for functions of L^p and $L^{p'}$ shows that

$$\int_{0}^{2\pi} g(x)\overline{h(x)}dx = \pi \sum_{n=m}^{\infty} \left\{ \lambda(n) \left(a_{n} \cos \frac{\delta \pi}{2} + b_{n} \sin \frac{\delta \pi}{2} \right) \overline{r_{n}} + \lambda(n) \left(b_{n} \cos \frac{\delta \pi}{2} - a_{n} \sin \frac{\delta \pi}{2} \right) \overline{s_{n}} \right\}$$

$$= \pi \sum_{n=m}^{\infty} \left\{ \lambda(n) \left(\overline{r_{n}} \cos \frac{\delta \pi}{2} - \overline{s_{n}} \sin \frac{\delta \pi}{2} \right) a_{n} + \lambda(n) \left(\overline{s_{n}} \cos \frac{\delta \pi}{2} + \overline{r_{n}} \sin \frac{\delta \pi}{2} \right) b_{n} \right\}$$

$$= \int_{0}^{2\pi} \overline{H(x)} f(x) dx,$$

where

$$H(x) \sim \sum_{n=m}^{\infty} \lambda(n) \left\{ \left(r_n \cos \frac{\delta \pi}{2} - s_n \sin \frac{\delta \pi}{2} \right) \cos nx + \left(s_n \cos \frac{\delta \pi}{2} + r_n \sin \frac{\delta \pi}{2} \right) \sin nx \right) \right\}$$
$$= \sum_{n=m}^{\infty} \lambda(n) \left\{ r_n \cos \left(nx - \frac{\delta \pi}{2} \right) + s_n \sin \left(nx - \frac{\delta \pi}{2} \right) \right\}.$$

Thus H(x) is the transform of $h_m(x)$ which is obtained by use of the number $-\delta$ and the sequence λ . The application of Hölder's inequality followed by the use of (8) then shows that

(13)
$$\left| \int_{0}^{2\pi} \overline{H(x)} f(x) dx \right| \leq M_{p'}(H) M_{p}(f) \\ \leq M_{p}(f) \Lambda^{2/p'}(m) A^{(p'-2)/p'}(\lambda, -\delta, m) M_{p'}(h_{m}).$$

A well known result of M. Riesz [1] implies that

$$(14) M_{p'}(h_m) \leq B_p M_{p'}(h)$$

where B_p depends only on p and not on the functions involved. The combination of formulas (10) through (14) then shows that

$$M_{p}(g) - \eta \leq B_{p} \Lambda^{2/p'}(m) A^{(p'-2)/p'}(\lambda, -\delta, m) M_{p}(f)$$

and (9) follows since η was arbitrary.

The result of Theorem 1 will now be applied to integrals of functions of $K_{m,p}$. It is convenient to use the definition of the integral of order α which is due to Weyl [4]. For any positive α , for $f(x) \in K_{m,p}$ and with Fourier series (3), the integral of order α , $f_{\alpha}(x)$, is defined as

$$f_{\alpha}(x) = \sum_{n=m}^{\infty} \frac{1}{n^{\alpha}} \left\{ a_n \cos \left(nx - \frac{\alpha \pi}{2} \right) + b_n \sin \left(nx - \frac{\alpha \pi}{2} \right) \right\}.$$

Thus $f_{\alpha}(x)$ is the transform of f(x) of the type of (4) with $\delta = -\alpha$ and the sequence $\{\lambda(n)\} = \{n^{-\alpha}\}$. Various results are known concerning the relationship between $M_{\infty}(f_{\alpha})$ and $M_{\infty}(f)$, the most inclusive of which is that of Sz. Nagy [3] who shows that

$$A(\lambda, \delta, m) = A(\lbrace n^{-\alpha} \rbrace, -\alpha, m)$$

$$\leq (4/\pi m^{\alpha}) \left\{ \left| \cos \frac{\alpha \pi}{2} \right| \sum_{v=0}^{\infty} (-1)^{v} (2v+1)^{-(1+\alpha)} + \left| \sin \frac{\alpha \pi}{2} \right| \sum_{v=0}^{\infty} (2v+1)^{-(1+\alpha)} \right\}$$

$$\leq (4/\pi m^{\alpha}) H(\alpha).$$

It can also be seen from [3] that

$$A(\{n^{-\alpha}\}, \alpha, n) \leq (4/\pi m^{\alpha})H(\alpha).$$

A direct application of Theorem 1 yields the following theorem.

THEOREM 2. If $f(x) \in K_{m,p}$, and $f_{\alpha}(x)$ is its integral of order α (α not necessarily integral) then

(15)
$$M_{p}(f_{\alpha}) \leq m^{-\alpha} (4H(\alpha)/\pi)^{(p-2)/p} M_{p}(f) \qquad (2 \leq p),$$

$$M_{p}(f_{\alpha}) \leq B_{p} m^{-\alpha} (4H(\alpha)/\pi)^{(2-p)/p} M_{p}(f) \qquad (1$$

where B_p is the constant of Theorem 1 and

$$H(\alpha) = \left|\cos\frac{\alpha\pi}{2}\right| \sum_{v=0}^{\infty} (-1)^{v} (2v+1)^{-(1+\alpha)}$$
$$+ \left|\sin\frac{\alpha\pi}{2}\right| \sum_{v=0}^{\infty} (2v+1)^{-(1+\alpha)}.$$

A result of Schmidt [2] shows that for the real functions of $K_{1,p}$ and α integral the coefficient of $M_p(f)$ in (15) is not the best possible.

BIBLIOGRAPHY

- 1. M. Riesz, Sur les fonctions conjuguées, Math. Zeit. vol. 27 (1928) pp. 218-244.
- 2. E. Schmidt, Über die Ungleichung, welche die Integral über ein Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet, Math. Ann. vol. 117 (1940) pp. 301-326.
- 3. B. v. Sz. Nagy, Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen, I. Periodischer Fall, Saechsische Akademie der Wissenschaften, Mathematisch-physische Klasse, Berichte vol. 40 (1938).
- 4. H. Weyl, Bemerkung zum Begriff der Differentialquotienten gebrochener Ordnung, Naturforschende Gesellschaft, Zurich, Vierteljahrsschrift vol. 62 (1917) pp. 926-302.
 - 5. A. Zygmund, Trigonometrical series, Warsaw-Lwów, 1935.

University of Oregon