EXTENSIONS OF DIFFERENTIAL FIELDS. III
E. R. KOLCHIN

The purpose of the present note is to show how the point of view
of a preceding paper! can be used in developing the concepts of resol-
vent, dimension, and order introduced by J. F. Ritt in his theory of
algebraic differential equations.? The present development, in addi-
tion to being simpler in some instances, has the advantage of being
valid for abstract differential fields as opposed to fields of meromor-
phic functions of a complex variable, as used by Ritt. I shall also take
the opportunity to correct mistakes in a related paper.® The notation
and definitions used will be as in Extensions I and I1.

1. Resolvents, dimension, and order. Let ¥ be a differential field
(ordinary or partial) of characteristic 0, and let ¥4, « - -, ¥, be un-
knowns. If II is a prime differential ideal in §{yi, + - -, .} other

than F{y1, - - -, ya} itself then II has a generic solution 7y, * * * , 7.

If the degree of differential transcendency of F{(m, + -+, 7.) over
¥ is g then 0 £g<n, and precisely ¢ of the elements m, + - -, 9, are
differentially algebraically independent over ¥. Suppose, say, that
Mm ¢+ +, Nq are independent in this way, that is, that II does not
contain a nonzero differential polynomial in yy, - - -, 9, but does in
Y, * * *, Yo ¥; for each j>¢. In Ritt’s terminology y - - -, ¥, is

a complete set of arbitrary unknowns for II. It is natural to call ¢
the dimension of Il (in symbols, dim II).

Suppose henceforth that ¥ is ordinary. It is easy to see that the
degree of transcendency of F(m, : - -, 7.) over F(m, - -, ng)
(both these differential fields being considered as fields) is finite.
We denote the degree of transcendency of any field 3¢ over a sub-
field G by 8°3¢/G. It will be seen that it is natural to call the integer
F(m, + - -y M)/ Flm, - -+, ng) the order of II with respect to
Y1, * + *, ¥q (When the set of arbitrary unknowns is understood, for
example when ¢=0, we use the notation: ord II).
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1 Kolchin, Extensions of differential fields, I, Ann. of Math. vol. 43 (1942) pp. 724—
729. We shall refer to this paper as Extensions 1.

2 The subject matter treated here, together with some of the material from Ex-
tensions 1, is roughly parallel to the contents of §§24-31, 75 of Ritt, Differential equa-
tions from the algebraic standpoint, Amer. Math. Soc. Colloquium Publications, vol. 14,
New York, 1932.

3 Kolchin, Extensions of differential fields, 11, Ann. of Math. vol. 45 (1944) pp. 358—
361. We shall refer to this paper as Extensions 11.
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If #{n, + + +, o) contains a nonconstant (which is the case either
when ¥ does or when ¢>0) then by Extensions I there is an w such
that F(n, - - -, ng @}=F(n, + + -, ma). Let A=A(p, - - -, g w)
be an irreducible differential polynomial in ¥{ns, - - -, n,){w}, with
solution w=uw, of lowest possible order. Since w and its first ord II de-
rivatives must be algebraically dependent over F(n1, + - -, 74), the
order of 4 is not greater than ord II. On the other hand, if the order
of 4 is p then the pth derivative (and consequently all the deriva-
tives) of w is algebraically dependent over ¥{n1, + - -, 74) on w and its
first p —1 derivatives, so thatord IT=0°%{(n1 - - -, 2.)/F(n1, + + +, M)
=0 (m, + + +, Mg W)/ Fl, + - -, ng) <p. Therefore the order of 4
in wis p=ord IL. A(y, - - -, ¥4 w) is called a resolvent of II. (Ac-
tually, this is a slight generalization of Ritl’s resolvent, which must be
in ¥{m, - - -, ¥o w} instead of merely in F(y, - * -, ¥y {w}.)

Let G be a differential extension field of ¥, let {Il} =ILN - - - NII,
be the decomposition into prime components (that is, prime dif-
ferential ideals none of which contains another) of the perfect
differential ideal generated by II in Gf{yi, - - -, ¥a}, and let
Ay, c oy Yo W) - - - As(y, - -+, ¥4 w) be the complete fac-
torization of A(yy, - -+, ¥, ) in Gy, - - -, yo{w}. Each
Ai(yy, + ¢+, ¥q w) is of order p in w, for a factor of 4(yy, - - -, Vg, W)
of order less than p would be a common factor of the coefficients in
Ay, » -+, Yo w) when A(yy, -+ ¢, ¥, w) is considered as a poly-
nomial in w,, the pth derivative of w. We shall now establish Ritt’s
result that »=s and each 4;(yy, * * -, ¥4 w) is a resolvent of one II;.
This result implies that II decomposes if and only if A (yy, - - -, ¥4, @)
factors, and that each prime component in the decomposition has the
same order as II has.

Letn{, - - -, 7. be a generic solution of II;. Then (by Extensions I,

§1)n{, - - -, nd is a generic solution of II, so that #{ =1, * - -, N4 —"a
generates an isomorphism of ¥{(n{, - - -, 7,/ ) onto F(n1, * -+, Ma)-
Therefore if we let ’ be the same differential rational function over ¥
ofpf{, -+, nd that wis of 1, - - -, 95, we shall have
7(771,s e ,ﬂq/:w'> = :7(7]117 M ynn,>'
Now w’ is a solution of A’=A(n{, - - -, ¢, W), and therefore of

some A! =A;(»{, - -+, 94, W), say of A{. Furthermore, w’ is not
a solution of two different A{’s, for w’ does not annul the separant
04’ /dw,=0(4{ - - - A])/0w,. Let w'’ be a generic solution of the
prime component of {A{ } in Gnd, - -+, 0 ){w} not containing
the separant dA4{ /dw,. Then w’’ is a generic solution of the prime
component of {4’} in F(n{,---, n¢){w} not containing the
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separant 04'/dw,, so that w'/—w’ generates an isomorphism of
Fnl, - -+, nd,w’)onto Fn!, - -+, n{, '), and a homomorphism
of Gint, - -+, 0w} onto Gnf, - - -, 9 Y{w'}. Therefore, if for
each i>q we let 7!/’ be the same differential rational function

over F(p{, -+, ng) of w'’ as 5!/ is of w’, then %/, .-, 5/,
Mok, © + +, M’ is a generic solution of II and a solution of some II;.
Since %{, + - -, 7. must be a solution of the same II;, and since one

II; does not contain another, n/, - - -, 14, ngk1, -+ +, 74’ is a solu-
tion of II;, and indeed a generic one.
Therefore n7.1—n4+1, * * -, 74’ —n, generates an isomorphism of
7 ! 124 123 ! i ! 3 M
g(m,"',‘ﬂq,‘ﬂﬁn"’,ﬂn>0ntog<"l1,"'y77n>, 1 1s an 1r-

reducible differential polynomial in G{»{, - - -, 7/ ){w}, with solu-
tion w=w’, of minimal degree, and Ai(y1, + - -, ¥4 W) is a resolvent
of IT;. In the same way, every II; has an 4;(yy, « - -, ¥4, W) as a resol-

vent, so that r <s. To show that there is no 4;(yy, - - +, ¥4, w) left
over, for any j let w; be a generic solution of the prime component
of {4/} in G(n{, -+, n!){w} not containing 94/ /dw,. For
each 7>¢ let 7;; be the same differential rational function over
7(77117 ] nq’)Owa'as ni’ is of w’. Then 771,’ tt 77«1,1 Nivg+1y * ° * s Nin
is a generic solution of II and therefore a solution of some II;, say II;,.
Therefore w; is a solution of the 4y for which Ax(yy, - - -, ¥4 w) is
a resolvent of II;. This implies that Ax(y1, + + -, ¥4 w) is divisible by
Aily1, + -, ¥q w), so that k=7 and 4,(y1, - - -, ¥ W) is a resolvent
Of a Hi.

If ¢=0 and ¥ consists solely of constants it is still true that each
prime component of {II} has the same order as II. To see this intro-
duce a new unknown # and let ¥’ = ¥(u), G’ = G'(u). The perfect dif-
ferential ideal generated by Il in ¥'{yi, - + -, ¥} is clearly prime and
has the same order as II has. The prime components of the perfect
differential ideal generated by Il in G'{y, - - -, y.} are the perfect
differential ideals generated by II;, - - - ,II,, and have the same order.
Therefore ord II;=ord II for each <.

2. Corrections to Extensions II. We refer now to the proof on page
359 of Extensions 1I. The derivation of the equation wK(z) —H(z)
=ad (2) is incorrect, for it rests on the unjustified assumption (see
lines 18 and 17 from the bottom) that 84 (z)/0y,EG{z}. To save the
proof we delete in toto lines 22—4 from the bottom (“Denote the
<+ +A(2):"), and replace them by the following considerations.

Let w=H(y)/K () be any coefficient in 4 (z) not merely an element
of ¥, with H(y), K(v) free of common divisor. Clearly wK(z) —H(2)
ez
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Denote the lowest common denominator of the coefficients in 4(2)
by D(y), and let B(y, z)=D(y)A(z). Then B(y, 2)EF{y, z}, and
B(y, ) =0. Since A(2) is irreducible and one of the coefficients in
A(z) is unity, the irreducible factors of B(y, z) are distinct and all
have the same order in z as A(z) has.

Denoting the order of B(y, 2) in ¥ by p, let B1(y, 2) be an irreducible
factor of B(y, 2) of order p in y. Let A be the prime component of
{Bi(y, 2)} which contains neither of the separants of Bi(y, z). No
other irreducible factor of B(y, z) is in A;, for such a factor would have
the same order in z as Bi(y, 2) and would be divisible by Bi(y, 2).
Let v, {1 be a generic solution of A;. B(y, 2) €A; but the separant of
B(y, z) with respect to z is not in A; (for otherwise the separant of
Bi(y, 2) would be in A;). Therefore {1 is a nonsingular solution of 4(z),
a solution of X, and a solution of wK(z) —H(z). Thus H(y)K(z)
— K(y)H(2) vanishes for the generic solution ¥, {1 of Ay, and is in A;.
With order in y clearly not greater than p, H(y)K(2) — K(v)H(2) must
be divisible by Bi(y, ).

Similarly, H(y)K(z) —K(y)H(2) is divisible by all the irreducible
factars Bi(y, 2), + -+, Bs(y, 2) of B(y, 2) which have order p in y.
Since all these B;(y, 2)’s are distinct we may write

H(y)K(z) — K(y)H(z) = L(y, 3)Bi(3, 2) - - - B«(9, 2),

where L(y, 2) EF{y, z}. Moreover, if we denote the degree of B(y, z)
in vy, (the pth derivative of y) by d, we see that the degree of
H(y)K(2) —K(y)H(2) in y, is not greater than d, that of Bi(y, 2)

- -« By(y, 2) is d, so that L(y, 2) is of degree 0 in y,, that is, of order
not greater than p—1in y.

Let B,;1(y, 2) be an irreducible factor of B(y, 2) of order p—1in v,
let A,;1 be the prime component of {B,+1(y, z)} not containing the
separants of B,.i(y, 2), and let ¥, {,41 be a generic solution of Agi.
As with v, {1 before, we see that v, {,41 is a solution of H(y)K(z)
—K(y)H(z). But v, {1 is not a solution of any B;(y, z) with ¢<s,
for no such B;(y, z) is in A,11. Hence v, {41 is a solution of L(y, 2),
and L(y, 2) €A1 This implies, since the order of L(y, z) in ¥ is not
greater than p—1, that L(y, 2) is divisible by B,u(¥, 2).

Similarly, L(y, 2) is divisible by all the irreducible factors B,41(y, 2),

-, By(y, 2) of order p—1 in y, so that

H(y)K(z) — K(y)H(z) = M(y,2)Bi(,3) - - - By(y, 2),

where M(y, z)EF{y, z}. Moreover, if we denote the degree of
B(y, 2) in ¥,, ¥,1 by e, we see that the degree of H(y)K(z) — K(y)H(z)
in y,, ¥, is not greater than e, that of Bi(y, 2) - - - Bi(y, 2) is e,
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so that M(y, z) is of degree 0 in y,, ¥,-1, that is, of order not greater
than p—2 in y.
Continuing in this way we finally arrive at an equation

H(y)K(z) — K(y)H(z) = P(2)Bi(y, 2) - - - Bu(y, 2),

where Bi(v, 3), « - -, Bu(¥, 2) are all the irreducible factors of B(y, 2).
Since H(z), K(z) have no common divisor, H(y)K(z) — K(y)H(z) has
no factor free of y that is not also free of 2. Therefore P(z) €F, and
H(y)K(z) —K(y)H(z) =aB(y, z), where aE&¥. The desired equation
wK(2) —H(z) =ad (z) immediately follows.

The rest of the proof of the theorem as given in Extensions 1I is
apparently correct.

Of the two examples given in Extensions 11, the proof for Example 2
is incorrect, and I do not yet know whether that example is valid.
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