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1. Introduction. In a recent paper, B. Segre1 showed that for any 
r ^ O a n irrational number £ can be approximated by infinitely many 
fractions A /B in such a way that 

1 A T 

(1 + 4r)1/2£2 B (1 + 4 T ) 1 ' 2 £ 2 

For T = 0 , this places A/B to the left of £ and within a distance 1/B2 

from it. This type of approximation was known to be possible, since 
alternate convergents to the continued fraction representing £ satisfy 
this condition. For r = 1, the inequality becomes 

1 A 1 
< £ < , 

5ll2B2 B Sïl2B2 

so that we have the classical theorem of Hurwitz.2 For other values 
of r, approximations from both sides are permitted, but the errors 
allowed on the two sides are different; hence the term unsymmetrical 
approximation. The result here was new, and is so related to Hur-
witz's inequality that one side is strengthened and the other weakened. 

Notice that the result for r > l is weaker than the result for r < l . 
For suppose tha t r > 1, and apply the theorem with r replaced by 1/r 
to the irrational number — £. In this way, the permissible errors on 
the right and left are interchanged, and we see that £ has infinitely 
many approximations A/B satisfying 

1 A r 

~ (r2 + 4ryi2B2 < ~B ~~ * < (r2 + 4T)1'2B2 

which is stronger than the original inequality. It is therefore sufficient 
to prove Segre1 s theorem for 0 ^ r ^ 1. 

Segre's proof depends on considering whether certain regions con-
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1 B. Segre, Lattice points in infinite domains, and asymmetric Diophantine approxi­
mations, Duke Math. J. vol. 12 (1945) pp. 337-365. 

2 A. Hurwitz, Über die angenâherte Darstellung der Irrationalzahlen durch rationale 
Brüche, Math. Ann. vol. 39 (1891) pp. 279-284. 
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tain lattice points. C. D. Olds3 has given a proof for the case r è l , 
making use of Farey series. We shall consider the problem, making 
use of continued fractions, and shall prove Segre's theorem (in §6) 
and somewhat more. In particular, we shall show (in §7) that for any 
e > 0 the inequality 

1 A 1 

(51 '2 - e)B2 B (51 '2 + 1)B2 

has infinitely many solutions. This result is interesting since it shows 
that one side of Hurwitz's inequality can be strengthened without essen­
tially weakening the other. 

In §2 we state a few known results about continued fractions which 
we shall need to use, and in §§3-5 we develop the theory that is 
needed for the last two sections. I t may be remarked that §3 is of 
some interest in itself, since we show there that the best approximations 
to an irrational number %from either side are convergents to £. 

2. Known results about continued fractions. Besides the conver­
gents An/Bn= [g0, <Zi> • • • , qn] to the continued fraction £ = [q0, qu 
#2, • • • ], we shall consider as approximations to £ the secondary con­
vergents 

An + An-i 
= L?o, • • • , jn- i , qn + 1J, 

Bn + Bn-i 

A.n A.n. 

D D - =* ko, • • • , g*-i, qn - 1]. 
JDn ~ £ > n - l 

However, in case qn+i = 1 the first reduces to the convergent A n+i/Bn+i9 

and in case <Zn = l the second reduces to the convergent A n_2/jBn-2; in 
such cases they will not be called secondary convergents. Notice that 
the first is on the opposite side of £ from An/Bni while the second is 
on the same side as An/Bn. 

If in general we put 

A 1 

\B2' 

then it is seen that for the convergent An/Bn the value of X is 

1 
An = Pn-\ > 

Oin 

3 C. D. Olds, Note on an asymmetric Diophantine approximation, Bull. Amer. Math. 
Soc. vol. 52 (1946) pp. 261-263. 
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and that for the secondary convergents considered, the values of X are 

1 1 1 1 
Xn' = 1 + 1 Xn' = 1 + Pn - 1 an + 1 OLn - 1 pn + 1 

respectively, where 

« n = [qn, qn-ly ' ' • , j f l ] , j8n = [?n+l , tfn+2, * ' ' ] . 

We shall use the notation 

[ ' * * i 2-2, q-i, [go], qi, 9s, • • 4 ] 

to denote the sum of two continued fractions 

[go, ?i, ?2, • • • ] + [0, g-i, g-2, • • • ]. 

With this notation, 

Xn = [qif ' ' ' , <7n-l, <7n, l^n+l], <7n+2, ' ' * J, 

X» = Igi, • • • , qn-i, qn, 1, [0j , qn+i — 1, <7n+2, • • • \, 

X»7 = [gi, • • • , qn-u qn — 1, [OJ, 1, g»+i, gn+2, • • • J. 

Besides the classical results that every convergent represents £ with 
an error less than 1/B2, and that every approximation for which the 
error is less than 1/2B2, is a convergent, we shall also need the result 
that every approximation with an error less than 1/B2 is either a con­
vergent or a secondary convergent.* 

3. The best approximations are convergents. A classical result 
about continued fractions is tha t the best approximations to an irra­
tional number £ are included among the convergents to the continued 
fraction representing £. This can be understood in the following sense : 
The inequality 

A 

B 
- € 

1 
< — 

IxB 

has infinitely many solutions, all of which are convergents to £, if fi is a 
suitable number) indeed, p may be any constant such tha t 2 g / x ^ 5 1 / 2 . 

We shall show that in a somewhat similar sense the best approxima­
tions to £ from the right are included among the convergents to £. 
More precisely, the inequality 

4 This result was stated without proof by P. Fatou, Sur Vapproximation des incom­
mensurables et les séries trigonomêtriques, C. R. Acad. Sci. Paris vol. 139 (1904) pp, 
1019-1021. See also R. M. Robinson, The approximation of irrational numbers by frac­
tions with odd or even terms, Duke Math. J. vol. 7 (1940) pp. 354-359. 
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A 1 
0 < £ < 

B nB2 

has infinitely many solutions, all but a finite number of which are con­
vergents to £, if ix is a suitable number, depending on £. I t is shown, in 
the theorem below, that /x may always be taken as one of the three 
numbers 1, 4 /3 , 2. A similar result of course holds also for approxima­
tions from the left. 

LEMMA 1. Suppose gw+i^2, so that Xn' actually corresponds to a sec­
ondary convergent. 

(a) If Xw' > 1, then Xn_i > 4 /3 . 
(b) If Xn' > 4 / 3 , then Xn_i>2 or X n + i>2. 

PROOF, (a) From Xn' > 1, we find /3 w <a n +2. Hence 

1 1 1 
Xrt_i = 0n_i H = an H > an + 

«n-l fin OCn+ 2 

Since this expression increases with an, which is at least 1, we find 
that Xn_i> 4 /3 . 

(b) Proof by contradiction. Suppose X n - i ^ 2 and Xw+i^2. From 
the first follows a n < 2 , and the second gives /3n+i<2, and hence 

1 1 
Pn = qn+i + —— > 2 + — • 

Pn+1 2 

Therefore 

1 1 2 1 4 
Xn' = 1 + < 1 + = — • 

fc-1 a n + l 3 3 3 
LEMMA 2. Suppose qn^2, so thatXn'' actually corresponds to a second-

ary convergent. 
(a) If\r!f>l1then\n>4:/S. 
(b) J/Xn" > 4 / 3 , then\n>2or\n-2>2. 

PROOF, (a) From Xn" > 1 , we find an<Pn+2, hence X n > 4 / 3 . 
(b) Proof by contradiction. Suppose X n ^ 2 and X n -2^2. From 

the first follows j8n<2, and the second gives an-i<2 and hence 
a n > 5 / 2 . Therefore Xn" < 4 / 3 . 

Notice that both lemmas assert that if a secondary convergent 
gives a good approximation to £, then a convergent can be found 
(with a nearby subscript) giving an even better approximation to £ 
from the same side. 
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THEOREM. At least one of the three inequalities 

A \ A 3 A 1 
0 < £ < — y 0 < £ < ; 0 < £ < 

B B2 B 4B2 B IB2 

has infinitely many solutions, of which all but a finite number are con­
vergents to £. 

PROOF. The first inequality has infinitely many solutions. If it has 
infinitely many solutions which are not convergents, then they must 
be secondary convergents. Thus by the lemmas, corresponding con­
vergents can be found satisfying the second inequality, which thus 
has infinitely many solutions. If it has infinitely many solutions which 
are not convergents, then they are again secondary convergents. Cor­
responding convergents can be found satisfying the third inequality, 
which thus has infinitely many solutions, all of which must be con­
vergents. 

4. The moduli of approximability. The degree of approximation 
possible for the irrational number £ is measured by the number 

M(£) = lim sup Xn, 

the modulus of approximability of the number £. In fact, the inequal­
ity 

1 A 
< 

has infinitely many solutions if ikf(£) >/*, but not if M{%) <ju. The 
function M(£) has been studied by various authors.6 In a similar way, 
the degrees of approximation possible from the right and from the 
left are measured by 

M+(£) = lim sup X2n+i, M~(£) = lim sup X2n, 

which may be called the moduli of approximability from the right 
and left, respectively. Evidently 

M(Q « max { J f + ( & # - ( £ ) } . 

Notice that 

M + ( - {) = Jf-(É)f M - ( - 0 = Jf+(0, 

so that the roles of the two moduli are interchangeable. 
8 See J. F. Koksma, Diophantische Approximationen, Ergebnisse der Mathematik 

und ihrer Grenzgebiete, vol. 4, no. 4, Berlin, 1936, chap. 3, §2. 
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The numbers 

h = [*, 1, k, 1, *, 1, • • • ] 

will be of particular interest for our problem. I t is clear that 

M+(h) = [ • • ' , 1, k, 1, [*], 1, k, 1, • • • ] = Pkt 

M~(h) - [ • • • , * , 1, *, [1], *, 1, * , • • • ] = <r*. 

Evaluating these continued fractions, we find that 

p* = (k2 + 4ft)1/2, cr» = {k2 + 4ky2/k. 

We noticed in §1 that it is sufficient to prove Segre's theorem for 
O ^ r r g l . For these values of r, the error allowed on the right is less 
than or equal to the error allowed on the left. Now to prove that an 
inequality of the form 

1 A 1 

aB2 B pB2 

where peer, has infinitely many solutions f or each irrational number £, 
it is sufficient to consider those numbers for which M+(£) ^ ¥ " ( 0 . For 
if .M~-(£)>AT+(£), then — £ satisfies the condition imposed. Applying 
the inequality to —• £, we see that we can satisfy 

1 A 1 
< £< 

pB2 B <TB2 

infinitely often. If p=cr, this is the required inequality. If p><r, then 
M+(%) ^a or M~{%) ^ p . Either of these conditions leads to M~{%) ><r. 
Hence we can satisfy the inequality. 

1 A 
< £ < 0 

aB2 B 
infinitely often. 

5. Classification of irrational numbers. In this section, we shall 
consider certain classes of irrational numbers, and show that together 
they include every irrational £ such that Af+(£) ^ikf~(£). The classes 
are defined by the following conditions, where k denotes a positive 
integer. 

( h ) ?2«--> h g w i - * 1, and hence M+(Ç) = pk, Af"(£) = <r*. 

(loo) ?2n-> <*>, ff2n+i-> 1, and hence Af+(£) = » , M~(£) = 1. 

(2.) lf+(f) > p*, Jf-(Ö > er*. 
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(3k) lim sup q2n = k + 1, lim inf q2n = k, q2n+1 —• 1. 

LEMMA. If ilf+(£)sèAf~(£), but we do not have g2n+i—»l, then £ be­
longs to class (2i) or (22). 

PROOF. Let a = lim sup q2ni 6 = lim sup q2n+i- By hypothesis, ft > 1 . 
We have the following cases : 

ft è 3. Jf+(Ö ê Jf-(Ö è 3. 

ft = 2, a ^ 4. Jf+({) è 4, l f - (Ö è 2. 

ft = 2, a ^ 3. Jf+({) ê M-(Ö ^ [4, [2], 4] = S/2. 

Thus £ belongs to the classes (2X), (22), (2i), respectively. 

THEOREM. An irrational number £ with l f+(f) sëikf~(£) belongs to at 
least one of the classes (1*), ( l*), (2*), (3*). 

PROOF. Because of the lemma, it will be sufficient to consider an 
irrational number £ with «fen+r—»1, but not belonging to any class (1*), 
(loo), or (3k), and to show tha t it belongs to class (2*) for some k. 

If lim sup q2n = <*>, we have M+(£) = oo. Since £ does not belong to 
the class (l»), we do not have g2n-*°°, and hence M~(£)>1. Thus £ 
belongs to class (2*) for any sufficiently large k. 

I t remains to consider the case when lim sup q2n is finite. Since £ 
does not belong to any class (1*) or (3 k), we must have 

lim sup q2n — lim inf q2n è 2. 

Hence there is an integer k^2, such that 

lim sup q2n = & + 1, lim inf q2n ^ k — 1. 

From the first condition alone, it follows that 

Jf+(Ö è [1, 1, [* + 1], 1, 1] = * + 2 > pk. 

Making use of the fact that infinitely many partial quotients do not 
exceed k — 1, and that ultimately none exceed k + 1, we also have 

M-(0 è [1, * + 1, [1], k - 1, 1] = [*, 1, *, [1], k, 1, fe] > (7,. 

The inequalities here are clear, and the equality in the middle may be 
verified by actual expansion of the continued fractions. Thus £ be­
longs to class(2fc). 

6. Segre's theorem. We shall put 

P c = (/c2 + 4K)1/2, <r,= 0C2 + 4K) 1 ' 2 A, 

even when K is not a positive integer. In particular, p«, = °° and o** = 1. 
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If we replace r by l//c, Segre's inequality becomes 

1 A 1 

We are to show that this inequality has infinitely many solutions 
A /B for each irrational number £ and each K such that 1 ^ K S °°. As 
noted in §4, for these values of K we need consider only values of £ 
such that AT+(£) *zM~(%). I t is thus sufficient to prove the theorem 
for each of the classes defined in §5. 

For numbers of class (l*), it is clear that (lK) is satisfied by infi­
nitely many approximations from the right if K < <*>, and by infinitely 
many approximations from the left if K = oo. For numbers of the other 
classes, the situation is made clearer by first formulating the following 
lemmas. 

LEMMA 1. If for some K0 we have 

Jf+(0 > p«0, Jf-(Ö > (7,0, 

then (I*) has infinitely many solutions f or each K. 

PROOF. Since pK increases and <rK decreases as K increases, we have 
M+(g)>pK for KS/CO, and M~(%) ><rK for K^KO. Hence (IK) is satisfied 
by infinitely many approximations from the right if K^KO, and by 
infinitely many approximations from the left if K^KO. 

LEMMA 2. If for some K0 we have 

Jf+(0 = pC0> Jf-(Ö = <r,0, 

/&6w (I,) fozs infinitely many solutions for each K, except possibly for 

PROOF. M+(£)>pK for #c<#c0, and M~(£)><TK for K>K0. 

For numbers of class (2*,), the hypothesis of Lemma 1 is satisfied 
with Ko = k. Hence the desired conclusion follows. For numbers of 
class (Ik), the hypothesis of Lemma 2 is satisfied with Ko = k. Hence 
the conclusion follows for K^k. Now for numbers of class (1*), we 
have 

X2n+1 —* Pk, X2n —* <?k, 

one of the limits being approached from above and the other from 
below. Hence for numbers of class (1*.), the inequality (I&) can also 
be satisfied. 

I t remains to prove (I*) for numbers of class (3*). We first notice 
tha t for numbers of this class 
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Pk ̂  Jf+({) é P*+i, <rk+i S M-(Q S <r*. 

The upper bounds here are sharp, but the lower bounds are not. I t 
is easily seen that the sharp lower bounds are given by 

M+(0 ^ [ • • • , 4, 1, 4, 1, [4 + 1], 1, 4, 1, 4, • • • ] = pi, 

M~(0 ^ [ • • • , 4 + 1, 1, 4 + 1, [1], 4, 1, k + 1, • • • ] = «rj+i. 

I t is clear that 

pi = 1 + Pk = 1 + (42 + 44)1 '2. 

Replacing 4 by 4 — 1 in the other expression and expanding, we find 
that for 4 è 2 , 

4(4 + 1) + (34 - 1)(42 + 44)1 '2 

24(24 - 1) 

We shall show below that 

Pk > PAH-0.8, °"& > Ö"*-0.5. 

From these inequalities, it follows that 

M+(Ç) ^ pi > Pfc+o.8, AF-(Ö è <rjb,+i> <rjb+o.5, 

for any number £ of class (3k). Hence the hypothesis of Lemma 1 is 
satisfied for numbers of class (3k) with a suitable /c0, and indeed with 
any K0 such that 

4 + 0.5 ^ KO g 4 + 0.8. 

The proof of the theorem will therefore be complete. 
PROOF THAT pi >pfc+o.8- The inequality to be proved is 

1 + (42 + 44)1 '2 > {(4 + 0.8)2 + 4(4 + 0.8) }^2 . 

If we square and simplify, this reduces to 

50(42 + 44)1 '2 > 404 + 71. 

Squaring again, we have 

90042 + 43204 > 5041, 

which is true, since the left side is at least 5220. 
PROOF THAT ai ><rk-o.b. If we multiply through by 24(24 — 1), the 

required inequality takes the form 

4 ( 4 + 1 ) + ( 3 4 - l)(42 + 44) x ' 2 > 2 4 { ( 2 4 - l )2 + 8(24 - l ) } 1 ' 2 . 
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If we square and simplify, this reduces to 

(3* - l ) ( i + l)(* f + 4&)1'2 > (3* - 1)*(* + 3) - 2, 

which is certainly true if 

(k + l)(k2 + Ik)1'2 > *(t + 3). 

Squaring this, we obtain the inequality 

£4 + 6i« + 9k2 + U > k* + 6hz + 9k\ 

which is true. 

7. Some stronger results. The inequality 

1 A 1 

akB
2 B pkB

2 

where k is a positive integer, is a special case of Segre's inequality. 
Now for numbers of class (1&), we have 

j|f+(0 = p*, 1£-(Ö = <r*. 

I t follows, as noted by Segre, that we cannot increase both of the 
numbers pk and ak. Actually, for numbers of the class (1&), we have 

X2n+1 —* Pfc, X2n --» 0"&, 

one of the limits being approached from above and the other from 
below ; which one is approached from which side depends on the be­
ginning of the continued fraction expansion. Hence we cannot in­
crease either of the numbers pk or <rk, leaving the other one fixed. 

Nevertheless, there are infinitely many solutions to the inequality 

1 A 1 

(ak-e)B* B pi B2 

for any €>0 , although pk = p&+l. In a similar way, if k^2 the in­
equality 

1 A 1 

ak
fB2 B (pk-e)B2 

has infinitely many solutions f or each e > 0 , although <rk >ak. We shall 
confine our discussion to the inequality ( I / ) , since the proof of (I*") 
is entirely similar. 

To prove the inequality (I* ), we need consider only numbers f for 
which M+(Ç) ^ Af~(£), as shown in §4. Now (I*) is satisfied by ap­
proximations from the right for numbers of classes (ly), (2y), and (3y), 
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ifj>k, since Pj}^pk+i>pk . I t is satisfied by approximations from the 
left for numbers of the classes (ly) and (2y) if j^kt since aj>ah — €} 

and for numbers of class (3y) if j<kt since then o-y+i>(rk — e. 
I t remains only to consider the numbers of class (3^). For these 

numbers we have M+(Ç)çZpk, and indeed A2n+i>p& has infinitely 
many solutions, since it is true whenever n is sufficiently large and 
<Z2n+2 = fe + l . Thus in this case, (I* ) can be satisfied by approximations 
from the right. 

I t is easily seen that there are numbers of class (3&) for which 
M~(£) <<Tk and M+(£) is arbitrarily near to pi. I t follows that we can­
not replace pi by any larger constant on the right side of the in­
equality (I* ). 

A particularly interesting case of the theorem just proved is ob­
tained by putting k = l: For any c > 0 , every irrational number £ has 
infinitely many approximations A /B such that 

1 A 1 

~ (51 '2 - e)B2 < ~B " < (51 '2 + 1)J52 * 

The coefficient of B2 in the denominator on the right cannot be replaced 
by any larger constant. 
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