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1. Introduction. McShane [2]1 and Tonelli [4] have given con­
ditions on the integrand function which insure that every absolutely 
continuous solution of the problem of minimizing the integral 

(1.1) I[y]~ f *ƒ(*,?,/)<** 
J *l 

satisfies the du Bois-Reymond form of the Euler equations. The prin­
cipal purpose of the present note is to give an alternate proof of these 
results of McShane and Tonelli. In addition to being simpler in de­
tail than the previous proofs, the differentiability theorems of §§2 
and 3 involve weaker hypotheses than the corresponding theorems of 
McShane and Tonelli, both in regard to conditions on the integrand 
function and in regard to the class of arcs considered. Basically, the 
present proof is intimately related to the proof of the fundamental 
lemma as given by Bliss [l, pp. 20-21]. 

2. A general differentiability theorem. Suppose that for (x, y, r) 
= (#» yu • • • , yn, ru - • • , rn) in a region R consisting of all values 
(xt y, r) satisfying Xi^x^xt, y in an open region A of (y%9 • • • , yn)-
space, and r « (rlf . . . y rn) arbitrary, the integrand f unction ƒ (re, y, r) 
satisfies the following conditions: 

(Hi) For fixed values of (y, r),f(x, y, r) is finite and measurable on 
X\X2\ 

(H2) For fixed values ofx,f(x, y, r) is of class C in (y, r). 
We shall be interested in proving a differentiability property of an 

arc y%~yi(x) which minimizes l[y] in a class of arcs K. Unquestion­
ably, the case in which K consists of absolutely continuous arcs is the 
most important. Our argument, however, is not complicated by allow­
ing K to be any prescribed class of arcs which possesses the following 
properties: 

(P0) If the arc yi~yi(x) {xi^x^x^) belongs to K, then for each x on 
X1X2 the point y~ [y%(x)] is in the region A; 

(Pi) If yi=*yi(x) (xi^x^X2) belongs to K, then the f unctions yi(x) 
are continuous on x\x% and the derivatives y{ (x) exist and are finite a. e. 
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(almost everywhere) on this interval; 
(P2) Ify%~y%(x) (xi^x^xz) belongs to K1 and the functions rji(x) are 

Lipschitzian on x\Xi and satisfy rji(xi) = 0 = Î;»(X2), then f or a suitably 
small in absolute value the arc yis=syi(x)+arji(x) (xi^x^Xz) also be­
longs to K. 

Actually, in the following proof we use (P2) only for sets of func­
tions t]i{x) for which w —1 of these functions are identically zero on 
XxX*. 

Along an arc of K the function/(x, y{x), y'(x)) is defined a.e. on 
#1*2. In considering (1.1), and similar integrals, it is to be understood 
that the integrand is the indicated function where this function is 
well defined, and equal to zero elsewhere on X\X%. Correspondingly, 
a function F(x) which is defined a.e. on #1X2 will be said to be measur­
able on #i#2 if the function which is equal to F(x) at the points where 
it is defined, and to zero elsewhere on X1X2, is measurable on this in­
terval. In view of (Hi) and (H2), and the measurability of a function 
that is the limit a.e. of a sequence of measurable functions [3, p. 122], 
it follows that along an arc y of K the function ƒ and its partial deriva­
tives with respect to yj and r,- (j = 1, • • • , n) are measurable on xix%. 

It is to be noted that we do not suppose that the integral (1.1) 
exists and is finite for every arc of K. An arc y of K is said to mini­
mize (1.1) in this class if l[y] is finite, and for arbitrary arcs Y of K 
for which l[Y] is finite we have l [F ]â / [ ; y ] . 

The following lemma will be used in the proof of the subsequent 
theorems. 

LEMMA 2.1. Let A* be a given bounded and closed subregion of A in 
y-space, and for a given positive integer N denote by RN the subregion 
of R consisting of all (x, yf r) satisfying Xi ^x ^#2, y in A*, and \u\ £N 
(î = l, 2, • • • , n). Then there exists a corresponding function \PN(X) 

which is finite and measurable on #i#2, and such that for (x, yf r) in RN 
we have 

I /r.(*. y9r)\£ iM*) (i « 1, 2, • • • , n). 

In view of hypotheses (Hi) and (H2) it follows that for fixed values 
of (yt r) the partial derivatives of ƒ with respect to y* and r< 
(1*1, • • • , n) are finite and measurable on X\X* Consequently, in 
R the function 

(2.2) g(x, y, r) - | ƒ(*, y, r) | + Z [ | fVi(x, y,r)\+\ ƒ„(*. * 0 |] 
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is continuous in {y, r) for fixed values of x on x&2, and measurable 
on xiXi for fixed values of (y, r). Now -RAT is the product of the interval 
xiH*x^x% and the closed and bounded region DN in (y, r) space con­
sisting of all sets (yf r) having y in A* and | fi\ £N (**= 1, 2, • • • , n). 
For each x on x\x2 define the functional value $N(X) as the maximum 
of g(x, y, r) on DN. In view of the continuity of g(x, y, r) as a function 
of (y, r) it follows that ^N(X) is finite on x%x2. Moreover, \//N(X) is 
measurable on this interval [3, p. 122], since it is the limit superior 
of a sequence of measurable functions g(x, y(&), r(fc))» where (ym, r(fc)) 
(fe=*l, 2, • • • ) is a countable sequence dense in DN. The function 
\I/N(X) thus defined clearly satisfies the conclusion of the lemma. 

THEOREM 2.1. Suppose that yi^yiix) (xi£x£x2) is a minimizing 
arc for (1.1) in a class K, and, in addition to hypotheses (Hi) and (H2), 
the integrand satisfies with this arc the further condition : 

(H3;,) There exists a constant 8>0 and a function <t>j(x) integrable on 
XIXÎ and such that for \ yj—yj(x)\ <8, $i=yi(x) (i?*j), we have 

| /*,(*.?.y '(*)) | £*y(«) 

a.e. on xix2. Then there exists a corresponding constant ct- such that 

*Ax) m ƒ„/*, y(x)f / ( * » - f V * a y(t)> y'(*))dt 

is equal to Cj a.e. on Xix2. 

Condition (Hs;/) implies the existence of the integral appearing in 
the definition of Zj(x) ; it also implies that the integral 

fXtf(xfY(x)iy(x))dx 
J xi 

exists for all arcs Yi**Yi(x) of K satisfying | F,(#)~y3ix)\ <5, 
Yi(x)—yi(x) (i?*j) on xix2f since for such arcs, 

(2.3) I f{x, Y(x), / (*)) \ £ | ƒ(*, y(x), / (*)) \ + 6<t>3{x). 

Corresponding to a positive integer iV, let EN denote the set of all 
points x on X\X2 at which the derivatives yl exist and \yl\ SN— 1 
(i=»l, • • • , n). We may suppose that N is sufficiently large to insure 
that m(Eiï)$ the measure of £#, is positive, since EN is a subset of 
EN+I (iV= 1, 2, • • • ) and HVHN+<*>m(EN) =#2—#1. Furthermore, let the 
region A* of Lemma 2.1 be such that it contains in its interior all the 
points y~ [yi{x)\ (xi^*x£x2) belonging to the supposed minimizing 
arc, and denote by EN;M the subset of EN where the function \(/N(X) 
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of that lemma satisfies the condition \PN(X)£M (ikf=l, 2, • • * )• 
Since EN\M is a subset of EN;M+I and limjif̂ oof#C£iV;iif) —M(EN) >0, we 
may also assume that M is so chosen that m{En-M) >Q. 

Now on EN\M the function Zj{x) defined in (Hs;/) is bounded and 
measurable, hence integrable. Consequently, there is a unique con­
stant Cj such that 

(2.4) 0 = 1 [ZJ(X) - c;]dx = I Zj{x)dx - C^EN-M). 

Now define rji(x)^0 for is^j, and 

(2.5) ifa) « f [*;(*) - Cj]lnudt, 
J xi 

where 7^,^ is the characteristic function of the set EN;M* The func­
tions rji(x) are clearly Lipschitzian on x\x% and satisfy T^(#I )=0 
— ̂ O^); moreover, rjj = 0 a.e. on CEN;M, the complement of EN,M 
on ffi#2. In view of the Lipschitzian character of the functions rji(x) 
and property (P2), there exists a positive constant ao such that for 
\a\ <ao the arc yi=*yi(x)+aif)i(x) belongs to K and lies in the region 
A* of Lemma 2.1. We shall also suppose that ao is chosen so small that 
#o| *?/(#)I <ô on #i#2 and a0[rç/(#)| ^ 1 a.e. on this interval. In par­
ticular, we have that \yf (x)+ar)j (x)\ ^iVa.e. on EN, and hence a.e. 
on the subset EN-,M- For such values of a the integral /[y+arç] exists 
and is finite, and 

I[y + arj]~ I ƒ(*, y + aq, y')dx 

+ I ƒ(*, y + av, y' + an^dx. 
v ENIM 

- CEniii 

(2.6) 

EN;M 

The existence and finiteness of the first integral of (2.6) follows from 
(2.3) for Y(x)=*y(x)+arj(x). The existence and finiteness of the sec­
ond integral of (2.6) follows from the measurability of the integrand, 
together with the fact that a.e. on EN;M the set (x, y(x)+ar}(x),, y'ix) 
+ar)'(x)) is in the region RN of Lemma 2.1, and consequently 
\f(x, y(x)+ar}(x), y'(x)+ar)'(x))\ ^N{X)SM on this set. 

Now, in view of (H3;/), for \a\ <a<> the partial derivative of 
ƒ(#, y(x)+arj(x), y'(x)) with respect to a exists and does not exceed 
in absolute value the integrable function | ?;,(#) | #ƒ(#), which, in turn, 
is not greater than (5/a0)<fo(#). Moreover, a.e. on EN;M the partial 
derivative of ƒ(#, y(x)+ar)(x), y'(x)+ar}'(x)) with respect to a exists 
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and does not exceed in absolute value (| *?/(#) | +\vi (%)\WN(X) 
£[(5+l)/a0]M. It then follows [3, p. 216] that the derivative of 
(2.6) with respect to a exists for | a | <ao, and is given by the usual 
differentiation under the integral sign. For # = 0 this derivative is 

CEN,U J ENIU 

\fvfls + frfli ]dx « I zpil dx, 

where the arguments of the partial derivatives of ƒ occurring in (2.7) 
are (x, y(x)> y'(x)). The last relation follows by the usual integration 
by parts, and use of the conditions rjj(xi) = 0 «rç/foO. Since the mini­
mizing property of y requires that this derivative be zero, and as the 
integral of rjj (x) over x±x2 is equal to zero, it follows, in particular, 
that 

(2.8) 

[zj(x) - cj]rj/(x)dx = I [zj(x) - Cj]2INiMdx 
X * X\ 

= I [zj(x) — cj]*dx. 

From (2.8) we have that Zj(x) —Cj a.e. on EN,M- NOW the constant 
Cj is seemingly dependent on N and M. Since, however, EN;M is a 
subset of EN;M+I (M=l , 2, • • • ) and lirriM+«>in(EN;M) —miEx), it is 
seen that a.e. on EN we have Zj(x) = c,-, where Cj is the constant de­
termined by any set EN;M for which m(£j\r;Af)>0. Similarly, since EN 
is a subset of E^+i (iV=l, 2, • • • ) and lim^^oom(£^)==^2—^i, it fol­
lows that Zj(x) = Ci a.e. on X\X* 

3. A second differentiability theorem. We shall now prove another 
differentiability property of a minimizing arc for (1.1) under the fur­
ther hypotheses : 

(H) f(x, yy r) is of class C' in all its arguments on R; 
(Pi) If yi~y%(x) (xi^xSto) is an arc of K, and the f unction f(#) 

is such that Ç(xi) =#i, f(#2) =#2, while there is a constant kèzl such that 
(x'~-x")/k g f (#') — f (x") %k{x'—x")for arbitrary values x\ x" satis-
fying xi^sx" <xf ^#2, thenyi~yi(Ç(x)) is also an arc of K. 

Condition (P2' ) is satisfied if K is either the class of arcs of bounded 
variation, the class of absolutely continuous arcs, or the class of Lip-
chitzian arcs. 

THEOREM 3.1. Suppose that y%^yi{x) (xi^x^x*) is a minimizing 

file:///fvfls
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arc for (\A)ina class K satisfying (P0), (Pi) and (P2' ), and, in addition 
to hypothesis (H), the integrand satisfies with this arc the further condi­
tion: 

(H3;o) There exists a constant 8 and a function <t>o(x) integrable on XiX2 

and such that if x and $ are on this interval and satisfy \cc—x\ <S, then 
a.e. on x\x2, 

l/.(*. ?(*),/(*)) I s*o(*). 
Then there exists a constant c0 such that 

n 

ƒ ƒ.(', yW. y'W)* 

is egwaZ to Co a.e. ow #i*2. 

Condition (H3;o) implies, in particular, that the partial derivative 
ƒ«(#, y(x), yf{x)) is integrable on xix2. Corresponding to a positive 
integer N, again let EN denote the subset of XiX2 on which the deriva­
tives yl (x) exist and satisfy |y/(aO| ^N— 1 (i = l, • • • , w). Hypothe­
sis (H) implies that along the minimizing arc the integrand ƒ and its 
partial derivatives with respect to r$- (i = 1, • • • , n) are bounded func­
tions of x on EN* AS in the proof of Theorem 2.1, we may suppose 
that N is so large that w(£isr)>0. Now on EN the function z(x) is 
bounded and measurable, and hence integrable. Let CQ be the con­
stant determined by the condition 

0= I [z(x) — co]dx •= I z(x)dx — £<)*»(£#), 

and set 

•J at 

where /# is the characteristic function of the set EN* Then 17(3;) is 
Lipschitzian on #1*2, y(xi) =0 = 77(#2), and for a0 sufficiently small the 
function T(/; a)=/+ai?(0 is such that (t'-t")/2£T(t'; a)-T(t"; a) 
£>2(t'—t") for all values of a such that | a | <a0, and for arbitrary 
/', / " satisfying Xi^t" <t'Sx2; moreover, T(x\\ a)~Xi, T(x2\ a)—x2. 
Hence for such values of a the equation 

x**t+ arj(t) m T(t; a) 

has a unique solution / = £(#; a), which is Lipschitzian on XiX2 and 
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such that (*'-*")/2«Sf(*'; a)~t(x"; a)&2{x'-x") for arbitrary 
values x'y x" satisfying x\Sx" <x' Sxi. We have also that fOci, a) 
= #i, T(#2, a) =#2, while f(#; 0)^x on X\X2. It then follows from (P2') 
that î(5c; a)— y *(£(#; a)) (#ié#ë3#2) defines an arc of K such that 
y<(*;0)»y<(*). 

From known theorems on the change of variable in a simple in­
tegral [3, p. 215] we then have that the integral (1.1) calculated 
along the arc y,- = y»(a;; a) is finite and equal to 

ƒ, **ƒ(/ + *,(0, y(f), y'(t)/[l + «„'(')]) [l + ar,'(t)]dt 
XI 

(3.1) » f ƒ(/ + ^( / ) , y(0, y W [ l + *v'(t)])[1 + aq'(i)]dt 

+ f f{t+an(t)$y(t),y'(t))dt. 

Since | y / | giV—1 on EN, it follows from (H) that a.e. on EN the 
partial derivative with respect to a of the integrand of the first in­
tegral of (3.1) exists for |G | <a0; moreover, this partial derivative is 
uniformly bounded for x on this subset of EN and \a\ <ao> Hypo the* 
ses (H) and (Hs;o) imply that for sufficiently small values of a the 
partial derivative with respect to a of the integrand of the second in­
tegral exists and does not exceed in absolute value the integrable 
function | rç(/)|$oOO. It then follows from the previously applied theo­
rem on differentiability of integrals that the derivative of (3.1) exists 
for a = 0, and is given by 

(3.2) ƒ*"[(ƒ- £ y/ƒ,.) n' + Av] dx, 

where the arguments of ƒ and its partial derivative occurring in (3.2) 
are (xfy(x), / ( * ) ) . 

In view of the minimizing property of the arc y%~yi(x), the integra-
bility of fx along this arc, and the conditions rj(xi) =0 = 77(̂ 2), we con­
clude that 

J» *% / • «1 

z(»W(x)dx « I [z(x) — co]vf(x)dx 
Xi */ JCj 

== I [z(x) — c^lNdx = I [z(x) — Co]*dx. 

That is, Z(X)=CQ a.e* on Ejy. As EN is a subset of EN+% (iV= 1, 2, • • • ) 
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and limjv*ooW(£iv)=^2—#1, it then follows that Z(X)—CQ a.e. on X\X^ 

4. Further remarks. The general differentiability theorems of §§2 
and 3 involve, respectively, hypotheses (H8;/) and (H8;o) for the con­
sidered minimizing arc. Now suppose that the integrand function 
ƒ(#> y> *0 satisfies (Hi) and (H2), and, in addition to (P0), (Pi) and 
(P2), the class K contains only arcs y%*=*yi(x) such that the derivative 
functions yl (x) are integrable on #i#2. Then every arc of K for which 
l\y] is finite satisfies (H3;/) whenever the integrand function satisfies 
the following condition: 

(H* )̂ There exist positive constants Mu M2, 5 such that if (xt y% r) 
and (x, y, r) are points of R with | yj—y$\ <S, yi~yi (i^j) then 

(4.1) | ƒ„(*, y,r)\£ M1\f(xt y,r)\ + M Si + E U 

Correspondingly, if ƒ(#, y1 r) satisfies (H), and, in addition to (Po), 
(Pi) and (P2 )> the class K contains only arcs y% — yi{x) such that the 
functions yl (x) are integrable on XiX2} then every arc of K for which 
l\y] is finite satisfies (H3;o) under the following additional hypothesis: 

(H*.0) There exist positive constants Mu M2, ô such that if (x, y, r) 
and (£, y, r) are points of R with \ %—x\ <S, then 

(4.2) \M*,y,r)\ £Ml\f(x,ytr)\+M2ll + S r ! 

The above hypotheses (H* )̂ and (H3.0) have been used by Mc-
Shane [2]. In connection with the above remarks it is to be noted 
that if the term M2[l+][>*-2]1/2 i n (4.1) and (4.2) is replaced by M%9 

then the condition that the functions yl (x) be integrable on #i#2 is 
not needed to insure that every arc of K for which l\y] is finite will 
satisfy the corresponding condition {Hz>j) or (H8;0). 

Finally, it is to be remarked that as a very special case of Theo­
rem 2.1 one has the following generalization of the fundamental 
lemma of the calculus of variations: 

If M(x) is finite and measurable on #i#2, and the integral 

f*M(xW(x)dx 

is zero f or every Lipschitzian function rj(x) satisfying rj(xi) =0 = rç(a;2), 
and for which the above integral exists and is finite% then there exists a 
constant c such that Mix) = c a.e. on xxx%. 

"U/2 

-11/2 
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