
DERIVATIVES AND FRÊCHET DIFFERENTIALS 

MAX A. ZORN 

1. Generalities. A function/(x), defined on an open set S of a com­
plex Banach space X, with values in a complex Banach space F, 
is said to have a Fréchet differential at a point Xo of 5 if for X*=XQ the 
following conditions (G), (D), and (P) are satisfied: 

(G) The limit lim^oljf(*+£*) -ƒ(*)]/£ = 5 / /= «ƒ(*, ft) exists for all 
ft in X] (D) this limit is a continuous linear function of ft; (P) the 
Gâteaux differential öf(x, ft) is a principal part of the increment, that 
is, [ƒ(*+*)-ƒ(*)!-«ƒ(*, *) = *(||A||). 

We say that f(x) is .F-differentiable on S if these conditions hold 
at every point of S; if the condition (G) is satisfied for every point in S 
we call the function G-differentiable on 5. 

The reader will find in [2]1 or [ô] a proof to the effect that a func­
tion which is G-differentiable on S—or indeed on more general sets— 
leads to a function ôf(xf ft) which is linear, in the algebraic sense, with 
respect to ft. We may thus replace the condition (D) by the require­
ment that the Gâteaux differential be continuous with respect to the 
argument ft, which in turn is equivalent to 5f(x, ft) being 0(1), o(l) 
or 0(||ft||) as ||ft|| tends to zero. 

Our main purpose is to show that (P) is satisfied automatically if 
(G) and (D) hold on 5, giving a new answer to the question : under 
which conditions is a G-differentiable function JF-differentiable? 

Previous solutions of this problem have been of two kinds. The first 
kind operates with topological conditions on the function ƒ(#), like 
continuity (see [4]), local boundedness (see [2]), or essential con­
tinuity (see [6]). The most general characterization theorem of this 
type seems to be the following: Let ƒ{x) be G-differentiable on the 
connected open set 5, and bounded on a set F—ikf, where V is a 
nonvoid open subset of S and M is such that the whole space X is 
not the sum of a countable number of homothetic images anM+an 

of M ; under these conditions the function f(x) is F-differentiable on 
S (see [7]). 

A solution of the second kind may be abstracted from [2] or [6]: 
if the higher differentials ônf(x; fti, • • • , ftn) are continuous functions 
of their ft-arguments for one value xo of x, then f(x) will be jF-differ-
entiable on a suitable neighborhood of xo. The two kinds of charac­
terizations are rather different; the first type refers to the behaviour 
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of ƒ(#) on an open set; the second is based on the behaviour on a sub­
set which is only "finitely open" (see the definition (2.1)). The condi­
tion (D) belongs to the second class, and we look upon it in this 
manner: 

By virtue of (D) there belongs to x a bounded linear transformation 
on X to F, whose value for the argument h is 8f(x, h). The bounded 
linear transformations on X to F, under the standard definition of 
norms, constitute a (complex) Banach space [X, F]. The above linear 
transformation is thus the value of a function on 5 to [X, F], which 
we denote by f'(x); the name derivative is justified by the formula 
Ôf(x,h)~f'(x)h. 

2. Derivation of the condition (P). The functions f(x) we deal with 
are at first assumed to be G-differentiable on a set D, which is finitely 
open according to the definition : 

(2.1) A subset D of the (complex) Banach space X is finitely open 
if for x in P , hi, • • * , hn in X, the w-uples (fi, • • - , £ » ) for which 

x + ri*i + • • • + UK G D 

form an open set of the w-dimensional (complex) number space. 
Without making use of the topology or metric of X the G-differen-

tial ôf(xt h) and the higher differentials dnf{x; fa, • • • , hn) may be 
defined; for instance, ô2f(x; h, k) is ôx

k[ôf(x, h)]. We shall use the 
(trivial) observation that the function ƒ(x) is G-differentiable on D 
if and only if f(x+£h) is a differentiate function of the complex 
variable f • 

The topology of the value space is of course being used; and since 
we want the values of our functions to be in Banach spaces it becomes 
understandable that we restrict the concept derivative as follows; 

(2.2) A function ƒ'(*) on D to the Banach space [X, Y] of all 
bounded linear transformations on X to F is called the derivative 
of f(x) if 8f(x, h)—f'(x)ht for x in D and h in X. 

The value of this definition may be gauged by the lemma: 

(2.3) The derivative is G-differentiable on D; 

and the theorem : 

(2.4) If f(x) is G-differentiable on an open set S and possesses a 
derivative on a nonvoid, finitely open subset D of S it satisfies the condi­
tion (P) at every point of D. 

We shall arrange the proofs in such a manner that a maximum of 
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information is derived from the behaviour of the function on the 
finitely open set D alone. 

From the theory of the (/-differential in [2] or [ô] we shall have to 
use the theorems: 

(2.5.1) The G-differentials ônf{x; hu • • • 1 hn) exist and they are G-
differentiable with respect to x on Dt linear and symmetric with respect 
to the h-arguments on X\ 

(2.5.2) For x fixed in D we get f(x+h)=J^?ônf(x; h, • • • , h)/n\ 
=]Co°£*(*> h), where h comes from a set Hx which is defined by the con* 
dition that |f | ^1 implies x+Çh&D. 

From the theory of linear operators we borrow (see [5]): 

(2.6) If the bounded operator [7(f) depends on the complex number 
f—which varies in an open set A—in such a manner that U{£)h is 
differenHable with respect to f for any h in X, then U(Ç) is differenH­
able with respect to f, on A. 

Proceeding now to the proof of the lemma (2.3) we note that it 
suffices to show that for k in X the quantity f'(x+Çk) is differentiate 
with respect to f. This will follow from A. E. Taylor's theorem (2.6) 
if we know that f'(x-\-Çk)h or 5/(#+ffe, h) is differentiate with re­
spect to f for any hinX\ that, however, amounts just to (/-differentia­
bility of df(x, h) with respect to xt which is asserted by (2.5.1). The 
lemma is thus proved and we may apply the theory of the G-differ-
ential to the function ƒ'(#). Its higher differentials will exist, and they 
will be bounded linear transformations. If Uix) is a G-differentiable 
function on D to [Xt F], we shall have the equality [ôU(x, k)]h 
= 8x

k{[U(x)]h},ior 

ilim [U(x + Çk) - U(x)]/t\ h - lim {[U(x + Çk)]h - [U{x)]h}/Ç. 

With the use of this principle and the symmetry of the differentials in 
their A-arguments one arrives by way of a mathematical induction at 
the formula: 

(2.7) «•ƒ(*; hu • • • , K)hn+l - V+y(x; * ! , - • • , An+i). 

The left member of (2.7) is continuous with respect to An+xî the 
right member is a symmetric function of the A-arguments, so that 
the differentials turn out to be partially continuous in these argu­
ments. By a theorem of Mazur and Orlicz (see [3, p. 65] and the refer­
ences given there; compare also [6, Theorem (3.7)]) they will be 
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continuous jointly in their A-arguments. The functions pn(xf h) 
= Sn/(#; h, • • • , h)/n\ are therefore continuous in h; in the termi­
nology of [2] and [6] we have shown that the "G-powers" p„{x, h) are 
"F-powers" of h. 

We show now that in a suitable neighborhood of & = 0 the power 
series ^L,™pn(x, h) converges uniformly towards a function which has 
pi(x, h) as its Fréchet differential. By (2.5.2) the sum of this power 
series coincides with f(x+h) on the set Hx. The proof is only a slight 
variation of the arrangement in [6]; we may thus content ourselves 
with a mere sketch. 

The set Hx on which the power series converges is of the second 
category, since \J£Li(nHx) is the whole space X. Since the terms are 
continuous functions of A, a classical principle shows that they are 
uniformly bounded on a sphere (compare [l, p. 19]). We may thus 
assume that for a suitable h0 and positive numbers p, M the inequality 
II&—h\\ ^ p implies, for all w, ||/>nW|| £*M (we drop the argument x). 
It is easily seen that due to the homogeneity and (/-differentiability 
of the functions pn(h) the same uniform bound obtains for \\h\\ ^ p 
(compare Theorem (4.1) of [6]). 

For ||Â|| rgcr<p we find \\pn(h)\\£M(ir/p)-, this ensures uniform 
convergence of ^2?pn(h) towards a function g(h), for \\h\\ £<r<p. 

We might stop here with an appeal to the theory of power series 
(see, for instance, [4, p. I l ] ) ; or we may prove, as in [6, Theorem 
(4.3)], the inequality 

II k(A) - «(0)] - Pi(h)\\ ^ || h\\*M/P(p - c), 

which yields for x in £>, h in HX1 \\h\\ ?£<r<p, 

(2.8) || [f{x +h)-f(x)]- Ôf(x, ft)|| â || A||2M/p(P - c), 

where the quantities M and p depend on x. 
At this point we make use, for the first time, of the premise that 

ƒ(x) be defined on an open set S which contains D. The number p may 
then be taken so small that for |JA|| <p the points x+h are contained 
in 5; we do not ask for more if we want the points x+Çh to be in 5 
for I f I ̂  1. By virtue of (2.5.2) the power series^™pn(xt h) represents 
f(x+h) in the sphere \\h\\ <p, so that the inequality (2.8) is valid 
there. A fortiori, the condition (P) holds at every point of D. We have 
proved the theorem (2.4); let us add the corollary: 

(2.9) Iff(x) possesses a derivative on the open set S it is F-differentia-
ble on S. 
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Added in proof, January 20, 1946. Professor A. D. Michal informs 
me that more than ten years ago, in connection with a first draft of 
his paper General tensor analysis (Bull. Amer. Math. Soc. vol. 43 
(1937)), he introduced the notion of a derivative as distinguished 
from a differential. 
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