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Let £ be a closed set in ^-dimensional space, x a point not in E. 
Denote by S(x) the largest sphere of center x which does not contain 
any point of E in its interior. Put <t>(x) ~EC\S(x). (A denotes the 
closure of A.) Denote by Mk the set of points for which 4>(x) contains 
k or more linearly independent points (that is, points which do not 
lie in any (k—2)-dimensional hyperplane). Mk is defined for k ̂ n + l. 
In a previous paper I proved that Mi has w-dimensional measure 0 
and conjectured that Mk has Hausdorff dimension not greater than 
tt+1— k. In the present note we shall prove this conjecture. In my 
previous paper I also proved that Mn+i is countable, but the proof 
there Riven applied only for the case n = 2 ; now we are going to give 
a general proof. 

Let R be any set in w-dimensional space. Let #£i<!. We define the 
contingent1 of R at x (contg« x) as follows: The contingent will be 
a subset of the unit sphere. A point z of the unit sphere belongs to 
contgu x if and only if there exists a sequence of points yu ^2, • • • 
in R converging to x so that the direction of the vector connecting x 
with yj tends to the direction of the vector connecting the center of 
the unit sphere with z. First we state the following lemma. 

LEMMA. Let there be given a set R in n-dimensional space. Assume 
that for every x, contg/j x does not contain any point of the intersection of 
the unit sphere with a k-dimensional hyperplane going through its center 
(the hyperplane can depend on x). Then R is contained in the sum of 
countably many surfaces of finite (n — k)-dimensional measure. 

This lemma is well known.2 

THEOREM 1. Let k <n+l. Then Mk is contained in the sum of count-
ably many surfaces of finite (n+l—k)-dimensional measure. If 
k — n+1, then Mk is countable* 

Received by the editors September 24,1945. 
1 G. Bouligand, Introduction à la géométrie infinitésimale directe. Also Saks, 

Theory of the integral. 
» Saks, ibid. pp. 264-266 and pp. 304-307. Also Roger, C. R. Acad. Sci. Paris 

vol. 201 (1935) pp. 871-873. 
8 For » = 2 this theorem is proved by C. Pauc, Revue Scientifique, August, 

1939. 
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Remark. This clearly means that the Hausdorff dimension of Mu 
(k â n+1 ) is not greater than n+1 — k. 

Let us first consider the case k~n+l. Assume that xQMn+i* Let 
z%Çz<l>(x)t i — l, 2, • • • , w+1, and assume that the s's are linearly in­
dependent. Denote by f(x) the maximum value of the volume of the 
simplices determined by the s's (since <t>(x) is closed the maximum is 
attained). Define now Nn+i(c) — N to consist of all the points xÇzMn+i 
for which f(x) ^c. It clearly will be sufficient to show that N is count­
able (for every c). In fact we shall show that N is isolated (in other 
words no #£JV is a limit point of N—x)t that is, we shall prove that 
for every x £iV contg# x is empty. If this would not hold then N would 
contain an infinite sequence of points y3- coverging to x so that the 
direction of the line connecting x with y^ would converge to a fixed 
direction. Let Z,- be a point of <j>(x) which is closest to yiy and let Ai 
be the (unique) hyperplane through Zj perpendicular to the segment 
xyt: It is easy to see that as j—>oo, A / converges to a limiting hyper­
plane A. Moreover it is easily seen that the set <j>{yj) is ultimately 
contained in any preassigned neighborhood of A. Thus for large 
enough j$ the volume f(y,•) must be less than c, an evident contradic­
tion ; this completes our proof. 

Next we prove our theorem in the general case. Let k Sn and define 
Mi to be the set of all points x for which the maximum number of 
linearly independent points in </>(x) is exactly k. It will clearly be suffi­
cient to show that M£ is contained in the sum of countably many 
surfaces of finite (w+1 — fc)-dimensional measure. Let xÇzMk , and let 
f(x) be the maximum volume of the fe-dimensional simplices formed 
from the points s t- , igk+l, where 2»G0(^). x&Mk'^-N' if f(x)*zc. 
Let x&N', and z»-, i^k+1, be the points which determine a simplex 
of maximal volume. Then a simple geometrical argument (similar to 
the previous one) shows that contg#' x consists only of the directions 
through x which are perpendicular to the hyperplane determined by 
the *»'s, i^k+1. Thus our theorem follows from the lemma. 

Let £ be a closed set, x&E. Denote by g(x) the distance of x from 
Ê. It has been proved4 that g(x) has a derivative —cos a in every di­
rection (x, y)f where a is the smallest angle formed by the direction 
(x, y) with the direction (#, z), z in <t>(x)t Clearly if x£.E the derivative 
of g(x) can be 0. We shall show that the derivative of g(x) is 0 for 
almost all points of £ . 

4 Mises, C. R. Acad. Sci. Paris vol. 205 (1937) pp. 1353-1355. See also Golab, 
ibid. vol. 206 (1938) pp. 406-408 and Bouligand, ibid. vol. 206 (1938) pp. 552-
554. 
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Let xÇ£E. Denote by S(xf e) the sphere of center x and radius €. 
Denote by G(x, e) the greatest distance of the points of 3(#, e) from J3. 
We are going to prove the following theorem. 

THEOREM 2. For almost all points of E (that is, for all points of E 
except a set of n-dimensional measure 0) 

limG(#, c)/e = 0. 

It is well known that almost all points of E are points of Lebesgue 
density 1. Let x be such a point, and suppose that 

lim G(x, €)/c ^ 0. 

This means that there exists an infinite sequence €,• and points zit 

z%ÇzS(xt €{), €,—»0, such that the distance of z» from E is greater than 
C€i, where c>0. But this clearly means that x can not have Lebesgue 
density 1. This contradiction establishes our theorem. 
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ON MONOTONE RETRACTABILITY INTO SIMPLE ARCS 

G. T. WHYBURN 

In recent work on the area of surfaces Radó [l]1 has had occasion 
to use the following properties as applied to locally connected con­
tinua A : 

(T) Every simple arc in A is a monotone retract of A ; 

(II) Every monotone image of A has property (w). 

Radó has noted that (II) implies (r) and that the sphere and 2-cell 
each have (II). In this paper it will be shown that (1) for locally con­
nected continua in general, property (II) is equivalent to unicoher-
ence, (2) for plane locally connected continua, property (ir) is equiva­
lent to unicoherence, and (3) every closed 2-dimensional connected 
manifold has property (x). 

To clarify our meaning, we recall that a continuum is compact, 
connected and metric. A continuous mapping f(A)~B on a con­
tinuum A is monotone provided f~l(y) is a continuum for yÇzB. If 
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x Numbers in brackets refer to the Bibliography at the end of the paper. 


