COUNTABLE CONNECTED SPACES
WILLIAM GUSTIN

Introduction. Let & be the class of all countable and connected
perfectly separable Hausdorff spaces containing more than one
point. It is known that an &-space cannot be regular or compact.
Urysohn, using a complicated identification of points, has con-
structed the first example of an &-space.! Two &-spaces, X and X*,
more simply constructed and not involving identifications, are pre-
sented here. The space X* is a connected subspace of X and contains
a dispersion point; that is, the subspace formed from X* by removing
this one point is totally disconnected.

1. Sequences. The null sequence or any finite sequence of positive
integers will hereafter be called more briefly a sequence. The null se-
quence or a sequence having an even number of elements is said to
be even and a sequence having an odd number of elements is said to
be odd. A sequence will usually be denoted by a lower case Greek
letter: an arbitrary sequence by ¢, 8, or v; an arbitrary even sequence
by A, u, or v; the null sequence by o. A positive integer will be de-
noted by a lower case italic letter (not x, y, or 2), which may also
serve to represent the sequence consisting of that single integer.

The relation a1 signifies that a 24 for every element a of «, and
a <1 that a <7 for every element a of a. The null sequence vacuously
satisfies both 024 and 0 <i.

The sequence formed by adjoining B8 to the end of « is denoted
by of.

DEFINITION. The relation 8D o is to mean that a sequence o’ exists
such that B=aa’ and o’ 21.

Some immediate consequences of the preceding definitions are:
1.1, D

1.2. If D and j =1, then ..

1.3. If yDiB and D, then v Dic.

1.4. If yDao and v DB, then B e 0or aDif.

Proor. Let ¥ Daa and v DB; then sequences a’, B’ exist such that
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y=aa', o' Za, and y=88’, B’ =b. Since aa’=pF’, there exists a se-
quence o'’ such that 8=aa’’ or a sequence B’/ such that a=p8"".
If B=ac'’, then ao’=PB"'=aa’’B’; hence o’ =a''B’. But a’=a, so
o'’ za and consequently BD,c. Similarly, if a=pp", then aD:p.

2. Points in X. The space X shall consist of two disjoint subsets:
Y, the set of all even sequences; and Z, the set of all ordered pairs
{k, (u, v)} composed of a positive integer k and a set (u, )= (v, p)
of even sequences u and ». Hereafter a point u in ¥ will be denoted
by y(u) and a point {#, (4, »)} in Z by 2i(s, »). Evidently X is count-
able.

The neighborhoods in X will be formed from certain subsets Y;(a)
of Y, defined for every positive integer ¢ and every sequence o.

DEFINITION. Y;(a) s the set of all points y(u) such that p2 ;e
Some properties of these sets are:

2.1, y(w) EYi(w).

2.2. If j2i, then Yi(a)C Yi(a).

23. If y(w)EYi(), then Yi(p) CYi(a).

2.4. Y,(a) Yu(B) 50 is equivalent to: B Dac 0r a D).

ProoF. If the set Y,(a) Y3(B) contains a point y(u), then uDq.x and
rOuB3; therefore, . or a .

Now, if 8D, define m =max (a, b), v= if 8 is even, v=0m if B
is odd. Thus v is even and » DB so y(») € Yu(8). Moreover » D.8Dac,
hence »D.x so y(»)EY4(a). Therefore Y.(a)Ys(8)50. Similarly
Yai(a) Yo(B) #0 if aDpB.

COROLLARY. If a#f and af <1, then Y;(a) Yi(8)=0.

To every point 2=2;(u, ) a unique positive integer q(2) =qw(u, »)
is assigned as follows. The set of all sets (i, ») of even sequences u
and », being countable and infinite, can be mapped onto the set of
positive integral primes by some 1-1 mapping p(u, »). Define

Qk(ﬂ-, ") = [?(Mf ”)]k

According to the unique factorization theorem of arithmetic, gisa 1-1
mapping of the point set Z onto a subset of the positive integers.
Moreover, since the infinite sequence of positive integers gx(u, v) for
k=1,2, - . . isstrictly increasing, gx(u, ¥)— © as k— ».
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3. Neighborhoods in X. For every point x in X and every positive
integer %, a neighborhood Vi of x is now defined.

DEFINITION.
Viy(w) = Yi(u);
Vizr(u, v) = z(u, v) + Yi(ug) + Yi(vg), q = q(u, v).

Under this definition of neighborhood X forms a Hausdorff topo-
logical space; that is, X satisfies the following neighborhood axioms.

Axiom 1. To every point x in X there corresponds at least one
neighborhood of x; every neighborhood of x contains x by 2.1 or by
definition.

Axiom 2. If Vix and Vx are two neighborhoods of x, a neighbor-
hood V,.x of x exists such that V,,xC Vix Vix. Indeed, if m =max (3, §),
then V,x=VxVx by 2.2.

Axiom 3. If Vix contains a point y(u), there exists a neighborhood
of y(u) contained in V;x. By 2.3 such a neighborhood is Viy(u).

Axiom 4H. Every two distinct points x, x’ in X are Hausdorff- or
H-separable; that is, there exist neighborhoods Vix of x and Vi’ of
x’ such that VixVix’ =0. The intersection V;xV:x’ can be reduced to
the sum of at most four intersections, each of the form Y;(a)Y;(a’).
If o, &’ are both even, then aa’ since x#x’. And also a#a’, if o, &’
are both odd; for then even sequences u, u’ and positive integers ¢, ¢’
exist such that a=pug, ¢’ =p’q’, and, since x#x’, ¢##%¢q’. Thus, accord-
ing to the corollary of 2.4, Y;(a)Yi(a') =0 when ¢ is chosen so that
aa’ <i. An integer 7 then exists for which Vix Vi’ =0.

Thus X is a nondegenerate countable Hausdorff space. Evidently
X is also perfectly separable.

4. Connectedness of X. Two distinct points x, x’ in a space E are
said to be H-separable provided neighborhoods V of x and V' of x’
exist such that VV’'=0; otherwise, the points x, x’ are said to be
H-inseparable. A single point is also said to be H-inseparable if it is
H-inseparable with every other point in E.

A space E containing an H-inseparable point x is connected; for
otherwise E could be covered by two non-null disjoint isolated (open
and closed) sets V, V', one of which contains x; but this would imply
the contradiction

0=VV"=VV' #0.

Moreover, if E is a Hausdorff space, then no point of E satisfies the
regularity axiom, or, more briefly, is regular. For let x’ be any point
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in E distinct from x. Since x, x” are H-separable in E, there exist dis-
joint neighborhoods V of x and V' of x’; consequently

V7' =0=TV".

If x were a regular point of E, then a neighborhood U of x would exist
such that V2T, so

0=VV'DOTUV =0.
Similarly, if x” were a regular point of E, then a neighborhood U’ of %’
would exist such that V'O T’, so

0=VV'DVU =0.
By considering the sets Yi(a) every point in the space X is now

shown to be H-inseparable. Hence X is connected and no point of X
is regular.

DEFINITION. Z;(x) is the set of all points zx(u, v) such that pgD.o
or vgDia, g=gx(p, ).

4.1. V(o) = Yi(a)+Zi(a).

Proor. The following equivalent statements show that YV:(x)
= Y;(a) :

y(R)EY ().

For all j: Viy(u) Vi(e) 0.

For all j: Yi(u) Yi(a) #0.

For all j: aDju or uD;a.

mqo

y(w) € Yi(a). _

The following equivalent statements show that ZY(a)=_Z:(a),
where ¢x(u, ») has been abbreviated to ¢:

21, ») EV(a).

For all 7: Vizi(u, v) Yi(a) 0.

For all j: [¥;(ug)+ Y;i(vq)] Vi(er) 0.

For all j: Yi(ug) Yi(a) 50 or Yi(vq) Yi(e) #0.

For all j: aDjuq or ugDia or @ ;vq or vqgDic.

kg0 or gD,

ze(p, V) EZi(a).

4.2, Zo(a)Zu(B) #0; hence every two distinct points in X are H-in-
separable.

Proor. Evidently there exist even sequences u, v such that pD .o
and »DuB. And since gi(u, v)— © as k— « a positive integer k exists
for which
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q= qk(/-" v) 2 max (g, b).

Therefore ugDqa and vgDwB; s0 2x(u, v) EZ () Z1(B).
Thus X is an &-space whose every point is H-inseparable.

5. The space X*. Let X* be the relative subspace of X formed by
removing from X all points 2x(u, ») except those of the form zx(u, o),
us#o. Notice that every X*-neighborhood of a point in X* is also an
X-neighborhood of that point. The argument of 4.2 shows that the
set Z,(a)Zy(0) contains a point of X*. The point y(o) is then an H-in-
separable point of X*. Thus X*, being a nondegenerate connected
subspace of an &-space, is also an &-space.

6. The space X** Let X** be the relative subspace of X* formed
by removing from X* the single point (o). This point is a dispersion
point of X*; for the following recursive construction of isolated sub-
sets in the space X** shows that X** is totally disconnected.

DEFINITION. For every mnon-null even sequence N and every positive
integer 1 such that X <i let

XN =X [ri) +2i )],
n=]
the sets Y (\) and Z{(\) being recursively defined as follows:
Yi(\) is the set of all points y(u) such that p2D.o", where a=NX\ if
n=1, and ar=q(z) for some :€Z¢"*(\) if n>1;
Z{(\) is the set of all pownts z=2z(u, 0) such that y(u)E YL (\) and
g(z) 1.

6.1. VixCX;(\) for all xEX:(\); hence Xi(\) is open in X**,

Proor. Let y(W)EY{\); then uD.,a* If y(\EViy(u), then
vDpDiar, so y(») E YEN).

Let z=2(u, 0) EZ{(\); then uD,a” and ¢(z) =4. If y(v) E Vi3, then
vDiug(2) or v 2iq(2). Now vDiug(2), q(z) =4, implies that v DD
and hence that y(»)EY;(\). And vD.q(2), 2E€Z¢(\), implies that
@) EVTHIN).

6.2. VixX:\)=0 for all xc&EX;(\); hence X;(\) is closed in X**.

Proor. Let y(u) EX;(\). Suppose the set Viy(u)X:(\) contains a
point y(»); then »D.u and vD,a” Therefore p D™ or a”*D,u. Now
a*D ., since al =\ <i and since o™ is a single integer if #>1. Hence
wDsam, so y(u) € Yi(\)—a contradiction.

Let z=23(u, o) X:(\). Suppose the set V;2X;(\) contains a point
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y(»); then »D,ug(z) or »Diq(z), and v D Therefore
Ar: anDiug(2) or ug(z) Diam or a”Dqq(z) or q(z) Dia™.

Now A0, A<%, and A=a!; A* then reduces to uq(z) DN; so u DN,
g(2) =1, and consequently 2&Z;(\)—a contradiction. If #>1, then
ar=gq(z") 21 for some 2'€Z{"'(\), so A* reduces to: ug(z) Dig(z’),
rs#o; or g(2) =g(2’). Now ug(z) Dig(s’), us#o, implies that pD.g(z"),
g(2) 21, and hence that zEZ;(\)—a contradiction. And ¢(z) =¢q(z")
implies that z =2’ € Z;~'(\)—also a contradiction.

The sets X;(\) are then isolated subsets of X** for A0, A <¢. No-
tice that

x=yQ\) € X:(V),
z = y(\") & X.(0) if N #Xand )\ <,
%= z(\, 0 € Xi(\) i q(x) = 4,

2 EX:N) i &€ Zandq(x) <.

Now there exists for any two distinct points x, x’ in X** an isolated
set X;(\) containing x but not x’: if x=y(\), x’=y(\’), choose ¢ so
that AN’ <z; if x =y(\) and x'EZ, choose ¢ so that Ag(x’) <7; and if
x=2,(\, 0) and x’'EZ, choose 1=¢(x), then ¢(x’) <7 and A <1, since
it may be assumed that ¢(x’) <¢(x) and since the mapping  can.be
selected so that uv <p(u, v).

Thus the space X** is totally disconnected. In particular, every
two distinct points in X** are H-separable; hence y(o0) is the only
H-inseparable point of X*.
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