COUNTABLE CONNECTED SPACES

WILLIAM GUSTIN

Introduction. Let \mathfrak{S} be the class of all countable and connected perfectly separable Hausdorff spaces containing more than one point. It is known that an \mathfrak{S} -space cannot be regular or compact. Urysohn, using a complicated identification of points, has constructed the first example of an \mathfrak{S} -space. Two \mathfrak{S} -spaces, X and X^* , more simply constructed and not involving identifications, are presented here. The space X^* is a connected subspace of X and contains a dispersion point; that is, the subspace formed from X^* by removing this one point is totally disconnected.

1. Sequences. The null sequence or any finite sequence of positive integers will hereafter be called more briefly a sequence. The null sequence or a sequence having an even number of elements is said to be even and a sequence having an odd number of elements is said to be odd. A sequence will usually be denoted by a lower case Greek letter: an arbitrary sequence by α , β , or γ ; an arbitrary even sequence by λ , μ , or ν ; the null sequence by σ . A positive integer will be denoted by a lower case italic letter (not x, y, or z), which may also serve to represent the sequence consisting of that single integer.

The relation $\alpha \ge i$ signifies that $a \ge i$ for every element a of α , and $\alpha < i$ that a < i for every element a of α . The null sequence vacuously satisfies both $o \ge i$ and o < i.

The sequence formed by adjoining β to the end of α is denoted by $\alpha\beta$.

DEFINITION. The relation $\beta \supset_i \alpha$ is to mean that a sequence α' exists such that $\beta = \alpha \alpha'$ and $\alpha' \ge i$.

Some immediate consequences of the preceding definitions are:

- 1.1. $\alpha \supset_i \alpha$.
- 1.2. If $\beta \supset_i \alpha$ and $j \geq i$, then $\beta \supset_i \alpha$.
- 1.3. If $\gamma \supset_i \beta$ and $\beta \supset_i \alpha$, then $\gamma \supset_i \alpha$.
- 1.4. If $\gamma \supset_a \alpha$ and $\gamma \supset_b \beta$, then $\beta \supset_a \alpha$ or $\alpha \supset_b \beta$.

PROOF. Let $\gamma \supset_a \alpha$ and $\gamma \supset_b \beta$; then sequences α' , β' exist such that

Presented to the Society, November 24, 1945; received by the editors August 24, 1945.

¹ Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. vol. 94 (1925) pp. 262-295; see pp. 274-283 for the example.

 $\gamma = \alpha \alpha', \ \alpha' \ge a, \ \text{and} \ \gamma = \beta \beta', \ \beta' \ge b.$ Since $\alpha \alpha' = \beta \beta', \ \text{there exists a sequence } \alpha''$ such that $\beta = \alpha \alpha''$ or a sequence β'' such that $\alpha = \beta \beta''$. If $\beta = \alpha \alpha'', \ \text{then } \alpha \alpha' = \beta \beta' = \alpha \alpha'' \beta'; \ \text{hence } \alpha' = \alpha'' \beta'.$ But $\alpha' \ge a, \ \text{so} \alpha'' \ge a \ \text{and consequently} \ \beta \supset_a \alpha.$ Similarly, if $\alpha = \beta \beta'', \ \text{then } \alpha \supset_b \beta.$

2. Points in X. The space X shall consist of two disjoint subsets: Y, the set of all even sequences; and Z, the set of all ordered pairs $\{k, (\mu, \nu)\}$ composed of a positive integer k and a set $(\mu, \nu) = (\nu, \mu)$ of even sequences μ and ν . Hereafter a point μ in Y will be denoted by $y(\mu)$ and a point $\{k, (\mu, \nu)\}$ in Z by $z_k(\mu, \nu)$. Evidently X is countable.

The neighborhoods in X will be formed from certain subsets $Y_i(\alpha)$ of Y, defined for every positive integer i and every sequence α .

DEFINITION. $Y_i(\alpha)$ is the set of all points $y(\mu)$ such that $\mu \supseteq_i \alpha$.

Some properties of these sets are:

- 2.1. $y(\mu) \in Y_i(\mu)$.
- 2.2. If $j \ge i$, then $Y_i(\alpha) \subset Y_i(\alpha)$.
- 2.3. If $y(\mu) \in Y_i(\alpha)$, then $Y_i(\mu) \subset Y_i(\alpha)$.
- 2.4. $Y_a(\alpha) Y_b(\beta) \neq 0$ is equivalent to: $\beta \supset_a \alpha$ or $\alpha \supset_b \beta$.

PROOF. If the set $Y_a(\alpha)Y_b(\beta)$ contains a point $y(\mu)$, then $\mu \supset_a \alpha$ and $\mu \supset_b \beta$; therefore, $\beta \supset_a \alpha$ or $\alpha \supset_b \beta$.

Now, if $\beta \supset_a \alpha$, define $m = \max(a, b)$, $\nu = \beta$ if β is even, $\nu = \beta m$ if β is odd. Thus ν is even and $\nu \supset_b \beta$ so $y(\nu) \in Y_b(\beta)$. Moreover $\nu \supset_a \beta \supset_a \alpha$, hence $\nu \supset_a \alpha$ so $y(\nu) \in Y_a(\alpha)$. Therefore $Y_a(\alpha) Y_b(\beta) \neq 0$. Similarly $Y_a(\alpha) Y_b(\beta) \neq 0$ if $\alpha \supset_b \beta$.

COROLLARY. If $\alpha \neq \beta$ and $\alpha \beta < i$, then $Y_i(\alpha) Y_i(\beta) = 0$.

To every point $z = z_k(\mu, \nu)$ a unique positive integer $q(z) = q_k(\mu, \nu)$ is assigned as follows. The set of all sets (μ, ν) of even sequences μ and ν , being countable and infinite, can be mapped onto the set of positive integral primes by some 1-1 mapping $p(\mu, \nu)$. Define

$$q_k(\mu, \nu) = [p(\mu, \nu)]^k$$

According to the unique factorization theorem of arithmetic, q is a 1-1 mapping of the point set Z onto a subset of the positive integers. Moreover, since the infinite sequence of positive integers $q_k(\mu, \nu)$ for $k=1, 2, \cdots$ is strictly increasing, $q_k(\mu, \nu) \to \infty$ as $k \to \infty$.

3. Neighborhoods in X. For every point x in X and every positive integer i, a neighborhood $V_i x$ of x is now defined.

DEFINITION.

$$V_i y(\mu) = Y_i(\mu);$$

$$V_i z_k(\mu, \nu) = z_k(\mu, \nu) + Y_i(\mu q) + Y_i(\nu q), \qquad q = q_k(\mu, \nu).$$

Under this definition of neighborhood X forms a Hausdorff topological space; that is, X satisfies the following neighborhood axioms.

Axiom 1. To every point x in X there corresponds at least one neighborhood of x; every neighborhood of x contains x by 2.1 or by definition.

Axiom 2. If $V_i x$ and $V_j x$ are two neighborhoods of x, a neighborhood $V_m x$ of x exists such that $V_m x \subset V_i x V_j x$. Indeed, if $m = \max(i, j)$, then $V_m x = V_j x V_j x$ by 2.2.

Axiom 3. If $V_i x$ contains a point $y(\mu)$, there exists a neighborhood of $y(\mu)$ contained in $V_i x$. By 2.3 such a neighborhood is $V_i y(\mu)$.

Axiom 4H. Every two distinct points x, x' in X are Hausdorff- or H-separable; that is, there exist neighborhoods $V_i x$ of x and $V_i x'$ of x' such that $V_i x V_i x' = 0$. The intersection $V_i x V_i x'$ can be reduced to the sum of at most four intersections, each of the form $Y_i(\alpha)Y_i(\alpha')$. If α , α' are both even, then $\alpha \neq \alpha'$ since $x \neq x'$. And also $\alpha \neq \alpha'$, if α , α' are both odd; for then even sequences μ , μ' and positive integers q, q' exist such that $\alpha = \mu q$, $\alpha' = \mu' q'$, and, since $x \neq x'$, $q \neq q'$. Thus, according to the corollary of 2.4, $Y_i(\alpha)Y_i(\alpha') = 0$ when i is chosen so that $\alpha \alpha' < i$. An integer i then exists for which $V_i x V_i x' = 0$.

Thus X is a nondegenerate countable Hausdorff space. Evidently X is also perfectly separable.

4. Connectedness of X. Two distinct points x, x' in a space E are said to be \overline{H} -separable provided neighborhoods V of x and V' of x' exist such that $\overline{V}\overline{V'}=0$; otherwise, the points x, x' are said to be \overline{H} -inseparable. A single point is also said to be \overline{H} -inseparable with every other point in E.

A space E containing an \overline{H} -inseparable point x is connected; for otherwise E could be covered by two non-null disjoint isolated (open and closed) sets V, V', one of which contains x; but this would imply the contradiction

$$0 = VV' = \overline{V}\overline{V}' \neq 0.$$

Moreover, if E is a Hausdorff space, then no point of E satisfies the regularity axiom, or, more briefly, is regular. For let x' be any point

in E distinct from x. Since x, x' are H-separable in E, there exist disjoint neighborhoods V of x and V' of x'; consequently

$$V\overline{V}' = 0 = \overline{V}V'.$$

If x were a regular point of E, then a neighborhood U of x would exist such that $V \supset \overline{U}$, so

 $0 = V\overline{V}' \supset \overline{U}\overline{V}' \neq 0.$

Similarly, if x' were a regular point of E, then a neighborhood U' of x' would exist such that $V' \supset \overline{U}'$, so

$$0 = \overline{V}V' \supset \overline{V}\overline{U}' \neq 0.$$

By considering the sets $Y_i(\alpha)$ every point in the space X is now shown to be \overline{H} -inseparable. Hence X is connected and no point of X is regular.

DEFINITION. $Z_i(\alpha)$ is the set of all points $z_k(\mu, \nu)$ such that $\mu q \supset_i \alpha$ or $\nu q \supset_i \alpha$, $q = q_k(\mu, \nu)$.

4.1.
$$\overline{Y}_i(\alpha) = Y_i(\alpha) + Z_i(\alpha)$$
.

PROOF. The following equivalent statements show that $Y\overline{Y}_i(\alpha) = Y_i(\alpha)$:

 $\nu(\mu) \in \overline{Y}_i(\alpha)$.

For all $j: V_i y(\mu) Y_i(\alpha) \neq 0$.

For all $j: Y_i(\mu) Y_i(\alpha) \neq 0$.

For all $j: \alpha \supset_{i} \mu$ or $\mu \supset_{i} \alpha$.

 $\mu \supset_i \alpha$.

 $y(\mu) \in Y_i(\alpha)$.

The following equivalent statements show that $Z\overline{Y}_i(\alpha) = Z_i(\alpha)$, where $q_k(\mu, \nu)$ has been abbreviated to q:

 $z_k(\mu, \nu) \in \overline{Y}_i(\alpha)$.

For all $j: V_i z_k(\mu, \nu) Y_i(\alpha) \neq 0$.

For all $j: [Y_i(\mu q) + Y_i(\nu q)] Y_i(\alpha) \neq 0$.

For all $j: Y_i(\mu q) Y_i(\alpha) \neq 0$ or $Y_i(\nu q) Y_i(\alpha) \neq 0$.

For all $j: \alpha \supset_{i} \mu q$ or $\mu q \supset_{i} \alpha$ or $\alpha \supset_{i} \nu q$ or $\nu q \supset_{i} \alpha$.

 $\mu q \supset_i \alpha$ or $\nu q \supset_i \alpha$.

 $z_k(\mu, \nu) \in Z_i(\alpha)$.

4.2. $Z_a(\alpha)Z_b(\beta)\neq 0$; hence every two distinct points in X are \overline{H} -inseparable.

PROOF. Evidently there exist even sequences μ , ν such that $\mu \supset_a \alpha$ and $\nu \supset_b \beta$. And since $q_k(\mu, \nu) \to \infty$ as $k \to \infty$ a positive integer k exists for which

$$q = q_k(\mu, \nu) \ge \max(a, b).$$

Therefore $\mu q \supset_a \alpha$ and $\nu q \supset_b \beta$; so $z_k(\mu, \nu) \in Z_a(\alpha) Z_b(\beta)$.

Thus X is an \mathfrak{S} -space whose every point is \overline{H} -inseparable.

- 5. The space X^* . Let X^* be the relative subspace of X formed by removing from X all points $z_k(\mu, \nu)$ except those of the form $z_k(\mu, o)$, $\mu \neq o$. Notice that every X^* -neighborhood of a point in X^* is also an X-neighborhood of that point. The argument of 4.2 shows that the set $Z_a(\alpha)Z_b(o)$ contains a point of X^* . The point y(o) is then an \overline{H} -inseparable point of X^* . Thus X^* , being a nondegenerate connected subspace of an \mathfrak{S} -space, is also an \mathfrak{S} -space.
- 6. The space X^{**} . Let X^{**} be the relative subspace of X^{*} formed by removing from X^{*} the single point y(o). This point is a dispersion point of X^{*} ; for the following recursive construction of isolated subsets in the space X^{**} shows that X^{**} is totally disconnected.

DEFINITION. For every non-null even sequence λ and every positive integer i such that $\lambda < i$ let

$$X_{i}(\lambda) = \sum_{n=1}^{\infty} [Y_{i}^{n}(\lambda) + Z_{i}^{n}(\lambda)],$$

the sets $Y_i^n(\lambda)$ and $Z_i^n(\lambda)$ being recursively defined as follows:

 $Y_{\bullet}^{n}(\lambda)$ is the set of all points $y(\mu)$ such that $\mu \supset \alpha^{n}$, where $\alpha^{n} = \lambda$ if n = 1, and $\alpha^{n} = q(z)$ for some $z \in Z_{\bullet}^{n-1}(\lambda)$ if n > 1;

 $Z_i^n(\lambda)$ is the set of all points $z = z_k(\mu, \mathbf{o})$ such that $y(\mu) \in Y_i^n(\lambda)$ and $q(z) \ge i$.

6.1. $V_i x \subset X_i(\lambda)$ for all $x \in X_i(\lambda)$; hence $X_i(\lambda)$ is open in X^{**} .

PROOF. Let $y(\mu) \in Y_i^n(\lambda)$; then $\mu \supset_i \alpha^n$. If $y(\nu) \in V_i y(\mu)$, then $\nu \supset_i \mu \supset_i \alpha^n$, so $y(\nu) \in Y_i^n(\lambda)$.

Let $z = z_k(\mu, o) \in Z_i^n(\lambda)$; then $\mu \supset_i \alpha^n$ and $q(z) \ge i$. If $y(\nu) \in V_i z$, then $\nu \supset_i \mu q(z)$ or $\nu \supset_i q(z)$. Now $\nu \supset_i \mu q(z)$, $q(z) \ge i$, implies that $\nu \supset_i \mu \supset_i \alpha^n$ and hence that $y(\nu) \in Y_i^n(\lambda)$. And $\nu \supset_i q(z)$, $z \in Z_i^n(\lambda)$, implies that $y(\nu) \in Y_i^{n+1}(\lambda)$.

6.2. $V_i x X_i(\lambda) = 0$ for all $x \in X_i(\lambda)$; hence $X_i(\lambda)$ is closed in X^{**} .

PROOF. Let $y(\mu) \notin X_i(\lambda)$. Suppose the set $V_i y(\mu) X_i(\lambda)$ contains a point $y(\nu)$; then $\nu \supset_i \mu$ and $\nu \supset_i \alpha^n$. Therefore $\mu \supset_i \alpha^n$ or $\alpha^n \supset_i \mu$. Now $\alpha^n \supset_i \mu$, since $\alpha^1 = \lambda < i$ and since α^n is a single integer if n > 1. Hence $\mu \supset_i \alpha^n$, so $y(\mu) \in Y_i^n(\lambda)$ —a contradiction.

Let $z = z_k(\mu, o) \in X_i(\lambda)$. Suppose the set $V_i z X_i(\lambda)$ contains a point

 $y(\nu)$; then $\nu \supset_i \mu q(z)$ or $\nu \supset_i q(z)$, and $\nu \supset_i \alpha^n$. Therefore

$$\mathfrak{A}^n: \alpha^n \supset_i \mu q(z)$$
 or $\mu q(z) \supset_i \alpha^n$ or $\alpha^n \supset_i q(z)$ or $q(z) \supset_i \alpha^n$.

Now $\lambda \neq 0$, $\lambda < i$, and $\lambda = \alpha^1$; \mathfrak{A}^1 then reduces to $\mu q(z) \supset_i \lambda$; so $\mu \supset_i \lambda$, $q(z) \geq i$, and consequently $z \in Z^1_i(\lambda)$ —a contradiction. If n > 1, then $\alpha^n = q(z') \geq i$ for some $z' \in Z^{n-1}_i(\lambda)$, so \mathfrak{A}^n reduces to: $\mu q(z) \supset_i q(z')$, $\mu \neq 0$; or q(z) = q(z'). Now $\mu q(z) \supset_i q(z')$, $\mu \neq 0$, implies that $\mu \supset_i q(z')$, $q(z) \geq i$, and hence that $z \in Z^n_i(\lambda)$ —a contradiction. And q(z) = q(z') implies that $z = z' \in Z^{n-1}_i(\lambda)$ —also a contradiction.

The sets $X_i(\lambda)$ are then isolated subsets of X^{**} for $\lambda \neq 0$, $\lambda < i$. Notice that

$$x = y(\lambda) \in X_i(\lambda),$$

 $x = y(\lambda') \notin X_i(\lambda)$ if $\lambda' \neq \lambda$ and $\lambda' < i$,
 $x = z_k(\lambda, o) \in X_i(\lambda)$ if $q(x) \ge i$,
 $x' \notin X_i(\lambda)$ if $x' \in Z$ and $q(x') < i$.

Now there exists for any two distinct points x, x' in X^{**} an isolated set $X_i(\lambda)$ containing x but not x': if $x = y(\lambda)$, $x' = y(\lambda')$, choose i so that $\lambda \lambda' < i$; if $x = y(\lambda)$ and $x' \in \mathbb{Z}$, choose i so that $\lambda q(x') < i$; and if $x = z_k(\lambda, o)$ and $x' \in \mathbb{Z}$, choose i = q(x), then q(x') < i and $\lambda < i$, since it may be assumed that q(x') < q(x) and since the mapping p can be selected so that $\mu \nu < p(\mu, \nu)$.

Thus the space X^{**} is totally disconnected. In particular, every two distinct points in X^{**} are \overline{H} -separable; hence y(o) is the only \overline{H} -inseparable point of X^* .

University of California at Los Angeles