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1. INTRODUCTION 

1.1. Introduction. Mathematicians should pause periodically in 
their own work and peruse the progress in astronomy, biology, chem­
istry, economics, engineering, and physics to see if recent advances 
in these fields suggest problems of mathematical interest. One reason 
why the Gibbs Lectureship was founded was, indeed, to facilitate a 
fruitful friendliness between mathematicians and other scientists. 

The subject of control is now very important and promises to be 
so in the future. Much has been written about the control of the air, 
the control of ships, airplanes, balloons, bombs, gliders, robots and 
torpedoes. The regulation of rotation became important in the early 
days of the telescope and steam engine. The related problem of sta­
bility is important now for electric motors, marine engines, hydraulic 
turbines and the generating plants for the distribution of gas and 
electricity for there is generally an economical speed of operation. In 
radio telegraphy a certain speed may be needed in order to get a de­
sired frequency. 

Controls are necessary in the chemical industries and in mining. 
They are useful in entertainment and were much needed when arc 
lights were used for illumination. Fountains which begin to play auto­
matically at sunset are used at exhibitions. Appold's home in London 
had many automatic devices to interest visitors. 

The control of conditions under which observations are made is of 
great importance to the astronomer, the physicist and the aeronauti­
cal engineer. The designer of an engine plans to regulate the flow, 
pressure, temperature and composition of his working fluid so that the 
engine will run smoothly and economically. 

The control of combustion may be important not only for economi­
cal reasons but also to avoid the production of smoke. On the other 
hand this production may be desirable sometimes when a smoke 
screen is needed. In such a case there should be flexibility of control. 
The subject of control is important also in refrigeration, air condi­
tioning and the preparation of food. Great attention is being paid to 
human comfort. We are in an era of air conditioning on a large scale 

The seventeenth Josiah Willard Gibbs lecture delivered at Chicago, Illinois, 
November 26, 1943, under the auspices of the American Mathematical Society; re­
ceived by the editors April 2, 1945. 
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and this requires the solution of many problems of control. I t is now 
understood throughout the land that the provision of the proper at­
mospheric conditions for the comfort of workmen and the perform­
ance of good work is even more important than the regulation of the 
supply of air and fuel to an engine. Precise weather is needed for 
precision work and for the manufacture of instruments of precision 
such as gauges. Proper air conditioning is needed for the production 
of quality fabrics. The proper temperature must be maintained when 
stained glass windows are being made. In small arms munition works 
where dry explosives are handled there is inevitably a certain amount 
of dust and for safety the amount must be regulated. A gas company 
must regulate the pressure of gas which it distributes and must also 
regulate the composition so that an escape of gas may be readily de­
tected by the odour of the escaping gas. Controls are needed for the 
safety of miners and of workmen in many industries. In the purifica­
tion of drinking water the rate of supply of chlorine must be regu­
lated. 

The subject of control is clearly an enormous one and it is well to 
bear in mind that advances made in one branch of the subject are 
sometimes useful in another. A recent aerodynamical torque trans­
mitter for the regulation of a marine engine1 is based on a principle 
used in the Remarex carbon dioxide recorder in which there are two 
pairs of vaned discs, one pair running in air and the other in the flue 
gas to be tested for CO2 content. The torque transmitter is intended 
to prevent the marine engine from racing when, owing to the pitching 
of the ship, the propeller leaves the water. 

Thus advances in marine and aeronautical engineering may depend 
on advances in chemical engineering. They may depend also on ad­
vances in electrical engineering. In wind tunnel research it is impor­
tant to be able to regulate the velocity of the air moving through the 
tunnel and one way of doing this has been provided by the extensive 
work on amplidynes made by the General Electric Company. A large 
adjustable-speed wind tunnel drive based on the use of amplidynes 
is described in a paper by Clymer.2 

In acoustical research it is often necessary to control the vibrations 
of air in a room. In reverberation work, for instance, the generator of 

1 Aerodynamic marine-engine governor, Engineering vol. 157 (1944) pp. 447-448. 
2 C. C. Clymer, Large adjustable-speed wind-tunnel drive, Transactions of the Amer­

ican Institute of Electrical Engineers vol. 61 (1942) pp. 156-158. Many applications 
of the amplidyne in closed cycle controllers or regulating systems are described by 
F. E. Crever, Fundamental principles of amplidyne applications, ibid. vol. 62 (1943) 
pp. 603-606. 
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sound may be required to produce a pure tone for a certain length of 
time. If a loud speaker is used and the drive is furnished by an elec­
tric current the frequency must be controlled. Sometimes a pure tone 
is obtained electrically with the aid of an electrical filter. The theory 
of acoustic and electric filters belongs to the larger subject of the con­
trol of vibrations which is important also as it is desirable to eliminate 
as far as possible the noise and unpleasant vibrations associated with 
the use of machinery. Much attention has been paid in recent years 
to the problem of the muffler, the damping of the torsional vibrations 
of crankshafts and the avoidance of dangerous oscillations in hydrau­
lic transmission lines. 

1.2. Quantities which it may be desirable to control.3 

1. The temperature T. 
2. The total density, p, or its reciprocal the specific volume. 
3. The speed q or the component velocities u, vy w. 
4. The mass flow per unit area q. 
5. The pressure p. 
6. The heat content or enthalpy H. 
7. The rate of chemical action, evaporation or condensation. 
8. The coefficient of heat transfer. 

3 For the control of temperature reference may be made to E. Griffiths, Thermo­
stats and temperature-regulating instruments, Griffin, London, 1943; Th. J. Rhodes, 
Industrial instruments for measurement and control, McGraw-Hill, New York and 
London, 1941; R. L. Weber, Temperature measurement and control, Blakiston, Phila­
delphia, 1941. For the control of various physical quantities see M. Jakob, P. Gmelin 
and J. Kronert, Physikalische Kontrolle und Regulierung des Betriebes, Part I, Leipzig, 
1932, Lithoprint, Edwards Brothers, Ann Arbor, Mich., 1943. For matters relat­
ing to heat transfer and evaporation see W. H. McAdams, Heat transmission, 
McGraw-Hill, New York, 1942; also A. Fono and C. H. Fielding's papers in Engineer­
ing vol. 149 (1940) pp. 79-82. In the theory of hydrogen cooling a mathematical 
theory of the shaft sealing system is given by D. S. Snell, The hydrogen-cooled turbine, 
Transactions of the American Institute of Electrical Engineers vol. 59 (1940) pp. 35-
50. For the recent work on detonation and the physics of flames reference may be 
made to the book of Bernard Lewis and G. v. Elbe, Combustion, flames and explosion 
of gases, Cambridge, University Press, 1938, and to their paper, Stability and structure 
of burner flames, Journal of Chemistry and Physics vol. 11 (1943) pp. 75-97. For 
problems of control in the chemical industry reference may be made to the article 
by H. Seiferheld, Die Regeltechnik in der chemischen Grossindustrie, Zeitschrift für 
Technische Physik, vol. 18 (1937) p. 409 and to a paper by M. Ruhemann, Equilib­
rium of liquid and vapour in a rectifying pan, Physica vol. 4 (1937) pp. 1157-1168, in 
which use is made of some equations given by F. Boënjakovic. For the electrical pre­
cipitation of particles and fumes in gases reference may be made to the work of F. G. 
Cottrell, Electrical dust and fume precipitation, Bulletin of the American Institute of 
Mining Engineers vol. 67 (1912) pp. 667-675, discussion, pp. 675-680. 
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9. The velocity of propagation of ignition, detonation or wave mo­
tion. 

10. The increase or rate of increase of the entropy. 

1.3. Types of motion which it may be desirable to produce or avoid. 
1. Motions characterized by a certain degree of turbulence such as: 
a. Laminar motion in which there is no turbulence. 
b. Flow that seems steady but is really turbulent. 
c. Tumultuous flow. 
d. Swirling flow which is desirable for efficient mixing and good 

combustion. 
e. Flow in which the stream breaks away from the boundary at a 

selected place. 
f. A standard type of turbulence for comparable results in differ­

ent wind tunnels. 
g. Pulsating flow. 
h. Flow in which there is a decided rotation about a fixed axis or a 

mean direction of motion. 
2. Motions in which there is a specified relation between p and p 

(barotropic flow) or between pq and q. 
3. Motions accompanied by regular vibrations which may or may 

not be audible. 
a. Regular vibrations may be desirable in experimental work or in 

some types of engine. Thus in the Kadency engine4 the intake is 
timed to occur at the moment when the pressure in the cylinder has 
fallen below the atmospheric pressure. In the Constantinesco patents 
regular vibrations in a fluid are used for various types of control in 
which accurate timing is essential. 

b. Both regular and irregular vibrations may be undesirable on ac­
count of the noise they produce or because they make a flame un­
steady and lead to its extinction or to flash back. 

1.4. Methods of control. As the subject of control belongs largely 
to chemical and electrical engineering only a brief outline of methods 
can be given here and these will be restricted largely to cases of aero­
dynamical interest. A few references are given to books from which 
the reader can obtain information on chemical and electrical methods. 

Some of the most important methods of control are: 
1. Clever design of fixed boundaries so as to produce desired re­

sults with little attention. Thus diffusors, guide vanes and honey­
combs may produce the desired type of flow in a wind channel. A 

4 S. J. Davies, An analysis of certain characteristics of a Kadency engine, Engineer­
ing vol. 149 (1940) pp. 515-517, 557-559, 617-620. 
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spoiler may prevent the flow of air over a roof from injuring the roof. 
Stationary parts of an engine may be designed to produce a type of 
flow which is compatible with high efficiency. The wings, body and 
control surfaces of an airplane may be designed so as to provide low 
drag and good maneuverability. 

2. Devices for altering the form of the boundary of a fluid. Of these 
the valve is the most important and the design of a suitable valve is 
often one of the chief steps in the development of a new invention. A 
list has been formed of nearly eighty different kinds of valves. A 
valve is generally a device for regulating the rate of flow of a fluid 
but it may also be used to regulate the pressure or composition of a 
gas in an enclosure. Mathematically it is usually considered in connec­
tion with the regulating device but there are some cases in which 
equations can be set up for the valve alone. In an attempt to elucidate 
the action of the throttle valve Joule and Thomson (Lord Kelvin) 
made their famous porous plug experiment which tests the accuracy 
of the thermodynamical assumption that the internal energy of a gas 
depends only on its temperature. Thomson's discussion of the experi­
ment brought into prominence the idea of heat content or en­
thalpy. Valves may be regarded as including adjustable slots in 
wings5 and devices for sucking air from the boundary layer or for 
blowing air into the boundary layer.6 The ports of a bunsen burner 
are also valves. Another device for altering the form of the boundary 
of the fluid is the fan or blower which produces a forced draught. A 
modification of this is the windmill or air turbine. A steam turbine 
or turbine working with gas, mercury vapor or some combination of 
fluids is another modification. 

3. Devices for altering the thermal or electrical condition of a fluid 
at a boundary. The supply of heat at a boundary or the absorption 
of heat at a boundary is a most effective way of controlling the motion 
of a fluid. There are also many electrical devices by means of which an 
aerodynamic or hydraulic system may be coupled with an electrical 
system that is furnished with some means of control which may or 
may not be automatic. 

4. Devices for introducing solid particles or liquid in the form of 
a spray into the body of the working fluid. Gases in the form of jets 
may also be introduced as in the blowpipe torch and in furnaces. 
Overfire air jets have been found to be effective for smoke elimination 

5 F. Handley Page, The Handley-Page wing, Aeronautical Journal vol. 25 (1921) 
p. 363. 

6 O. Schrenk, Boundary layer removal by suction, National Advisory Committee 
on Aeronautics, Technical Memorandum No. 974,1941. 
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as in a recent paper by Engdahl and Holton.7 Davis8 has applied a 
theory of turbulent air jets developed by Tollmien to the problem of 
the furnace. The ignition of gaseous mixtures by hot moving particles 
has been studied by Silver9 and Paterson.10 The cooling of gases by 
sprayed water is one of the methods employed in air conditioning; it 
has the advantage that the humidity of the air may thereby be con­
trolled at the same time. A history of air conditioning is given by 
W. H. Carrier.11 There are cases in which a supply of heat may lead to 
large fluctuation in temperature. The stability of a simple thermal de­
vice which has been called an "academic oven" has been considered by 
Turner.12 The analysis depends on a transcendental equation involv­
ing both exponential and trigonometrical functions. Oscillations in 
thermal regulators have been considered also by Himmler.13 

The problem of stability and of the avoidance of large oscillations 
becomes important whenever the working fluid is coupled with a me­
chanical or electrical regulating device. The centrifugal governor in­
vented by Huygens14 as a possible means of regulating a clock was 
adapted for windmills and water wheels before it was used by James 
Wat t for the steam engine. A theory of the governor of Huygens has 
been given by Poor,15 the theory of Watt ' s governor and related de­
vices has an extensive literature beginning, perhaps, with the work of 

7 R. B. Engdahl, Over fir e air jets effective for smoke elimination, Heating, Piping 
and Air Conditioning, September 1943, p . 481. 

8 R. F . Davis, The mechanics of flame and air jetsf Engineering vol. 144 (1937) 
pp. 608-610, 667-668; Proceedings of the Institute of Mechanical Engineers vol. 137 
(1938) pp. 11-72. 

fl R. S. Silver, The ignition of gaseous mixtures by hot particles, Philosophical Maga­
zine (7) vol. 23 (1936) pp. 633-657. 

10 S. Paterson, The ignition of inflammable gases by hot moving particles, Philosophi­
cal Magazine (7) vol. 28 (1939) pp. 1-23. 

11 W. H. Carrier, Air conditioning, Encyclopedia Brittanica; see also W. H. Car­
rier, R. E. Cherne and W. A. Grant, Modern air conditioning, heating and ventilation, 
Chicago, Pitman, 1940; C. O. Mackey, Air conditioning principles, Scranton, Pa., 
1941. Lord Kelvin is credited with a proposal for the use of mechanical cooling as a 
means of improving human comfort. William Appold devised apparatus for control 
of temperature and humidity. See J. P . Gassiot, On Appold's apparatus f or regulating 
temperature and keeping the air in a building at any desired degree of moisture, Proc. 
Roy. Soc. London vol. 15 (1867) pp. 144-146. 

12 L. B. Turner, Self-oscillation in a retroacting thermal conductor, Proc. Cambridge 
Philos. Soc. vol. 32 (1936) pp . 663-675. 

13 C. Himmler, Die Pendelungen bei warmetechnischen Regelvorgangen, Zeitschrift 
für Technische Physik vol. 11 (1929) pp. 579-584. 

14 C. Huygens, Horologii oscillatorii, Par t 5, Paris, 1673; Horologium, 1658. 
15 V. C. Poor, The Huygens governor, Amer. Math. Monthly vol. 32 (1925) pp. 115-

121. 
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Navier and Poncelet.16 For a survey of this literature reference may 
be made to the article of von Mises and to the book of Tolle.17 

2. T H E ALGEBRAIC PROBLEM 

2.1. Conditions of stability. In direct regulation the stability of the 
dynamical, electrical or hydraulic regulating device often can be dis­
cussed by the method of small oscillations. The system is generally 
a compound one which is partly of one type and partly of another. 
For instance, in the case of the steam engine, the compound system 
consists of the steam, the valve and the centrifugal governor and so 
the processes taking place are described by a system of differential 
equations. In indirect regulation the system is again compound. 
When a deviation from the norm (or rated value of the quantity to 
be controlled) passes out of the region of insensitivity, the indicator 
actuates a motor through the amplifier and a disturbance is produced 
which tends to annul the disturbance shown by the indicator. When 
the transient force is no longer operative, the most desirable type of 
motion of the system is a damped oscillation or a simple decay with­
out oscillation such as is sometimes produced when a jet is used to 
control the speed of rotation as in Michelson's18 measurements of the 
velocity of light by means of a revolving mirror. In the so-called exact 
regulation the indicator returns to the normal setting after a single 
swing past it. I t is generally, but not always, advantageous to elimi­
nate all the variables but one which may be denoted by x, then, if 
D=d/dt 

(PoD* + pj)^1 + • • • + * » ) * = ƒ(*). 

The transient function ƒ(/) may be different from zero only for 
0<t<T. Then, for t>Ty x is a sum of terms satisfying the equation 
with f(t) replaced by zero but it is not certain that all possible solu­
tions of the homogeneous equation enter into the expression for the 
particular quantity x. 

18 J. V. Poncelet, Cours de mêchanique, appliquée aux machines, Cours de l'école 
d'application de Metz, 1826. R. v. Mises, Dynamische Problème der Maschinenlehre, 
Encyklopâdie Mathematischen Wissenshaften vol. 4, par t 10, pp. 153-355. 

17 M. Tolle, Die Regelung von Kraftmaschinen, 3d éd., Berlin, 1921. Toile gives 
in particular a theory for the combination of a centrifugal governor and a relay. 
The theory is presented and amplified for the case of two relays and the effect of the 
steam by G. W. Higgs-Walker, Some problems connected with steam turbine governing, 
Proceedings of the Institute of Mechanical Engineers vol. 146 (1941) pp. 117-125. 

18 A. A. Michelson, Measurements of the velocity of light between Mount Wilson and 
Mount San Antonio, Astrophysical Journal vol. 65 (1927) pp. 1-14; A. A. Michelson, 
F . G. Pease and F . Pearson, ibid. vol. 82 (1935) pp. 26-61. 
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A regulator is said to be stable when, after a transient disturbance, 
the indicator returns to the region of insensitivity and does not go 
beyond this. In the case when the free motion involves an undamped 
or growing motion, the regulator is said to hunt or to be unstable. A 
sufficient condition for stability is that the roots of the algebraic equa­
tion 

(2.1) F(z) s poZ» + pxz"-1 + • • • + pn = 0 

should have only negative real parts. This condition may not be quite 
necessary because it may happen that a root with positive or zero real 
part does not happen to give a term in the expression for #. This pos­
sibility must be considered because something of an analogous nature 
seems to occur in some cases when the existence of a double root 
might make the sufficiency of the foregoing criterion seem doubtful. 

The mathematical theory of stability based on the theory of small 
oscillations may be hard to use on account of lack of knowledge of the 
constants of the dynamical or electrical system. These can be esti­
mated in many cases as in the theory of airplane stability but it is 
wise to have means of checking the results or of obtaining results 
when the computations are too difficult. 

An oscillograph for the analysis of governor performance was built 
by J. E. Allen,19 and the East Pittsburgh Research Laboratories 
have built an instrument for analyzing governor performance which 
satisfies the specifications that have been laid down. Instruments of 
this nature have been made elsewhere.20 Dougill has devised an in­
strument for testing regulators in operation and has used it to test 
the governors in the gas works.21 

2.2. Pseudo-negative roots. Liénard22 calls a quantity pseudo-neg­
ative when its real part is negative. The criterion for pseudo-negative 
roots of an algebraic equation is a special case of the criterion that 
the roots of an algebraic equation should lie within a specified circle 
in the complex plane, a line being regarded as a degenerate circle. 
A line may also be transformed into a circle by means of a transfor­
mation 

19 J. E. Allen, Oscillograph analyses governor performance, Power vol. 78 (1934) 
pp. 610-612. 

20 W. O. Oebon, A turbine governor performance analyzer, American Institute of 
Electrical Engineers vol. 69 (1941) pp. 963-967. 

21 G. Dougill, Retort house and exhauster governing of gas works, Engineering vol. 
144 (1937) p. 697. 

22 A. Liénard, Signe de la partie réelle des racines d'une équation algébrique* J. Math, 
Pures Appl. (9) vol. 15 (1936) pp. 235-250. 
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Z = (Az + B)/(Cz + D) 

which does not change the degree of the equation 
Cauchy23 devised a method for finding the criterion and Hermite24 

carried the analysis much further considering particularly the condi­
tions that the roots should lie in the upper half of the complex plane. 
He used a symmetrical polynomial 

H{z', z) « i[F(z')Fo(z) - F(z)Fo(z')]/(z - z') 

associated with the function F(z) and an associated function F0(z) 
derived from F(z) by changing i into — i in all the coefficients. The 
decomposition into squares of an associated quadratic form then indi­
cated the number of pseudo-negative roots, this number being de­
pendent in fact on the signature of the quadratic form. 

At a meeting of the London Mathematical Society25 in 1868, James 
Clerk Maxwell asked if any member present could point out a way of 
determining in what cases all the possible parts of the imaginary roots 
of an algebraic equation are negative. He said that in studying the 
motion of certain governors for regulating machinery he had found 
that the stability of the motion depended on this condition, which is 
easily obtained for a cubic, but becomes difficult in the higher de­
grees. W. K. Clifford said in reply that by forming an equation whose 
roots are the sums of the roots of the original equation taken in pairs 
and by determining the condition of the real roots of this equation 
being negative, we should obtain the condition required. 

Routh28 used Clifford's idea when formulating conditions for a 
quartic equation with real coefficients, 

(2.2) F(z) = az* + bzz + cz2 + dz + e = 0. 

He says: "Let us form that symmetrical function of the roots which 
is the product of the sums of the roots taken two and two. If this be 
called X/az, we find X — bed—ad2— eb2. Suppose we know the roots to 
be imaginary, say a±ip, jS + ig. Then 

X/a3 = 4ap[(a + /3)2 + (p + ?)»][(« + 0)2 + (p - q)2]. 

23 A. Cauchy, Calcul des indices des fonctions, J. École Polytech. vol. 15 (1837) 
pp. 176-229, Oeuvres (2), vol. 1, pp. 416-466. 

24 C. Hermite, Extrait d'une lettre, Sur le nombre des racines d'une équation algé­
brique compris des limites données, J. Reine Angew. Math. vol. 52 (1856) pp. 39-51. 

25 See the discussion of the paper by J. J. Walker, On the anharmonic sextic, Proc. 
London Math. Soc. (1) vol. 2 (1868) pp. 60-61. 

28 E. J. Routh, Rigid dynamics, vol. 2, 1897, pp. 192-193; A treatise on the stability 
of motion, London, 1877; Advanced rigid dynamics, 6th éd., 1907, pp. 256-307. 
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Thus, a/3 always takes the sign of X/a and a+f3 always takes the sign 
of —b/a. The signs of both a and j3 can therefore be determined; and 
if a, by X have the same sign, the real parts of the roots are all nega­
tive." Routh also formed the equation G(z)=0 whose roots are the 
sums in pairs of the roots of F(z) = 0 and in the case when the coeffi­
cients pr in the general equation (2.1) are all real he came to the fol­
lowing conclusion: 

In order that (2.1) may have all its roots pseudo-negative, it is 
necessary and sufficient that the equations F(z)=0, G(z)=0 should 
be complete with coefficients all of one sign. This means that no p 
should be zero and that if po>0 then pr>0. If, moreover, the co­
efficients of G(z) are qr, r = 0, 1, • • • , n2/2 — n/2 then if go>0, we 
should also have qr>0. These conditions give n2/2+n/2 inequalities 
while the expected number of conditions is only n so the foregoing 
conditions are not all independent. 

In his work on governors in which he considered particularly the 
governors designed by Foucault and Lord Kelvin, Maxwell found 
that the stability depended upon the conditions for pseudo-negative 
roots of an equation of the fifth degree zb+pz*+qz3+rz2+sz+t = 0. 
He found the necessary conditions pq>r, ps<t but could not prove 
that these conditions were sufficient. 

The simplicity of these conditions suggested that there might be 
necessary and sufficient conditions in the general case which could 
be formulated in a simple form. The subject of the stability of motion 
was soon afterwards proposed as a subject for the Adams Prize at the 
University of Cambridge and the prize was won by E. J. Routh of 
Peterhouse. He made use of the methods of Cauchy and Charles 
Sturm and a set of test functions was formed by a cascade process. 
Writing 

F(z) = E{z) + 0(z) = A(z2) + zB(z2) 

so as to resolve F(z) into its even and odd parts, he made use of the 
functions s0(y), Si(y), s2(y), • • • , sn(y), where 

so(y) = poyn - p2yn~l + • • • , si(y) = piy""1 - p*yn~z + • • • , 

s%(y) is the remainder with sign changed when use is made of the 
process for finding the G.C.M. of s0(y) and SiOO, Sz(y) is derived from 
Si(y) and s2(;y) in a similar way, and so on. I t is then clear as in Sturm's 
theorem that when sr(y)=0, sr+i(y) and sr-i(y) have opposite signs. 
If E denotes the excess of the number of changes of sign from + to — 
in s0(y)/si(y) over that from — to + , then by Cauchy's theorem the 
whole number of radical points on the positive side of the axis of y is 
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(n+E)/2. If E= —n the roots are all pseudo-negative. The roots of 
the equations A (x) = 0, B(x) = 0 are in this case all negative and occur 
alternately. In the case of the biquadratic 

F(z) = z4 + pzz + qz2 + rz + s = (z2 + X\){z2 + #2) + pz(z2 + xo) 

q = Xi+X2, r=pXo, s=XiX2 and Routh's test functions are 

s, p} pq — r = p(xi + x2 — Xo), r(pq — r) — ^25 = ^2(^2 — #o)(ffo — Xi). 

The third test function is positive when and only when x0 lies between 
Xi and #2- The test functions p and £g — r are both positive when p>0 
and #i+#2--#o is positive. Now if #i —#o is negative, #2 must be posi­
tive. When 5 is positive, Xi and #2 must be either both positive or 
both negative, hence if X2 is positive so also is xi, Routh's criteria for 
pseudo-negative roots imply then that xo, #1, X2 are all positive and 
that Xo lies between x\ and x*. When these conditions are all satisfied 
s is positive, r{pq — r)—p2s is positive, r(pq — r) and q — r/p are posi­
tive. The ratio r/p of the two last quantities is positive and so q 
must be positive. If p is also positive r is positive. Routh's conditions 
are all satisfied and the equation F(z) = 0 has pseudo-negative roots. 
Liénard attributes this converse theorem to E. Jouguet and says that 
Chipart has extended it to an equation of any degree. A general proof 
is given in Liénard's paper. 

Related polynomials such as A( — x), B(—x) occur naturally in 
Rayleigh's theory of the driving point reaction in dynamics and in 
the theory of electric filters. 

About 1893 the Swiss engineer Aurel Stodola27 investigated the 
stability of regulating devices for turbines, particularly those used in 
hydroelectric plants. He referred to Thomson and Tait 's Natural 
philosophy28 for the relation between stability and pseudo-negative 
roots and on this account Corral29 has called the question of pseudo-
negative roots the problem of Lord Kelvin. Previously30 he had 
followed Orlando81 in calling it the problem of Hurwitz because 

27 A. Stodola, Über die Regulierung von Turbinen, Schweizerische Bauzeitung vol. 
22 (1893) pp. 113-117,121-122,126-128,134-135; vol. 23 (1894) pp. 108-112,115-117. 

28 W. Thomson (Lord Kelvin) and P. G. Tait , Natural philosophy, vol. 1, 1879, 
p . 39. 

29 J . J. Corral, Nueva solution del problema de Lord Kelvin sobre ecuaciones de 
coefficientes reales, Revista de la Real Academia de Ciencias Exactas, Fisicas y Natu-
rales de Madrid vol. 22 (1928) pp. 25-31. 

30 J . J . Corral, Nuevos teoremas que resuelven el problema de Hurwitz, Madrid, 
Imprenta Clasica Espafiola, 1921. 

31 L. Orlando, Sul problema di Hurwitz, Rendiconti Accademia Lincei (5) vol. 19 
(1910) pp. 801-805; Math . Ann. vol. 71 (1911) pp. 233-245. 
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Stodola's compatriot Adolf Hurwitz32 had investigated the subject 
and had succeeded in obtaining criteria in the determinantal form 

po > 0, P! > 0, pl 

P* 

0 

Pi 

Pz 
Pi 

Po 

pi 

0 

Po 

p* 
pi 

>o, 

>o, 

Pi 

pi 

Pi 

and so on. 

po 0 

Pi P\ 

pi pi 

>o, 

pi po 

pz pi 

ps pi 

p7 Pt 

The equivalence of the conditions of Routh and Hurwitz was shown 
by Bompiani,33 and Orlando obtained a proof by induction of the 
necessity and sufficiency of Hurwitz's conditions. 

The study of equations with complex coefficients is also useful as 
there are some cases in which the conditions of Routh and Hurwitz 
are not the simplest possible conditions for pseudo-negative roots. 
In Appelle Mécanique rationnelle a discussion is given of dynamical 
equations such as 

*" + pi*' + qi% — piy' — qiy = 0, 

y" + piy' + qiy + P**' — q& =* o, 

in which there are gyrostatic terms. These equations are essentially 
those considered by Sir Horace Lamb in his work on kinetic stability34 

and by E. Jouguet in his work on secular stability.35 The algebraic 
equation obtained in the usual way is 

(z2 + piz + qiY + (p2Z + g2)
2 = 0 

but if we put x+iy = Zy as Lamb does, there is a single dynamical 
equation 

Z" + (pi + ipi)Zf + qi+ iq2 « 0 

82 A. Hurwitz, Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln 
mit negativen reellen Theilen besitzt, Math. Ann. vol. 46 (1895) pp. 273-284; Werke, 
vol. 2, pp. 533-545. 

38 E. Bompiani, Sulle condizioni sotto le quali un equazione a coefficienti reale am-
mette solo radici con parte reale negative, Giornale di Matematica vol. 49 (1911) pp. 33-
39. 

84 H. Lamb, On kinetic stability, Proc. Roy. Soc. London. Ser. A. vol. 80 (1908) 
pp. 168-177. 

85 E. Jouquet, Sur la stabilité séculaire quand les forces positionnelles n'admettent 
pas de potentiel, C. R. Acad. Sci. Paris vol. 207 (1938) pp. 267-270. 



i945l THE CONTROL OF AN ELASTIC FLUID 613 

which gives rise to an algebraic equation 

z2 + {pi + ip2)z + qi + iq2 = (z + x% + iyi)(z + x% + iy2) = 0. 

The conditions for pseudo-negative roots are now 

xi + x2 > 0 and #iff2[(#i + x2)
2 + (yi — y*)*] > 0 

while the corresponding conditions derived by considering the bi­
quadratic equation are Xi-\-x2>0 and 

xix2[(xx + x2)
2 + (yi - :V2)2][(*i + x2)

2 + (yi + 3>2)
2] > 0 

and there is an extra factor in the expression used for the second 
criterion. 

The conditions for the quadratic may be expressed in terms of the 
quantities Ii, I2, -f3 which are invariant when the equation is changed 
into a new equation by a substitution of the form z = Z+ia, where a 
is real. If 

(Z + ia)2 + (px + ip2)(Z + ia) +qi + iq2 

^ Z2 + (Pi + iP2)Z + Qi + iQ2 

then Pi = pi, P2=p2 — 2a, Qi:=g>i+ap2--a
2, Q2~q2-~api and so there 

are 3 invariants 

h = Pi « pu h = Öi + PÎ/4 = qi + pi/*, 

Iz = C2 - P1P2/2 = q2 - M2/2. 

If, in particular, we choose a so that P2 = 0, the equation takes the 
simple form 

Z2 + IxZ + I2 + ih = 0. 

If Zi, Z2 are the roots of this equation and if Pi, P2 are the roots of 
the conjugate equation 

P2 + 7iP + I2 - iU - 0, 

the equation whose roots are Z1+P1, Z2+P2, Z1+P2, Z2+P1 is 

S* + 4Zi58 + (57i2 + 4/2)52 + {III + Shh)S + 4Ii2J2 - 4J8
2 = 0. 

This is also the equation whose roots are Z1+/1, z2+t2, Zi+t2, z2+h 
where zlt z2 are the roots of the original equation and /1, t2 are the 
roots of its conjugate equation. It should be noticed that the terms 
in the equation for S involve the invariants and 5 only, moreover, by 
using two of these terms expressions 
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xi + x2 = I i , X!X2[(xi + x2) + (yi - y2) ] = 4( / i / 2 — Is) 

are obtained for the quantities that furnish criteria for the roots to 
be pseudo-negative. 

The quadratic equation may be reduced to a canonical form 

1 1 1 

+ + = 0 
z + iwi z + iw>2 z + u + iv 

where Wi> w2y u and v are real quantities. The equation is then of 
stable type (with pseudo-negative roots) when u > 0 for the roots are 
those of the derived function of the cubic 

(z + iw)(z + iw)(z + u + iv) = 0 

and so by the theorem of Gauss36 and Lucas37 lie within the triangle 
formed by the points z — —iwi, z= —iw2, z= —u — iv in the complex 
2-plane. The roots are in fact the foci of the ellipse which touches the 
sides of this triangle at its middle points. 

The equations for determining u, v, Wu ^2 are 

3^i = 2u, 3p2 = 2(v + i0i + w2), Sqi = — WiW2 — v(w\ + w2)1 

2>q2 = u(wi + w2) 

and so ^ i + ^ 2 = 2^2/^i, WiW2^= —3qi--(3pip2q2 — 4:^)/p2
v The quan­

tities Wu ^2 are thus the roots of the quadratic equation 

2 2 2 2 
piw — 2q2piiv + 4q2 — 3pip2q2 — 3piqi = 0 

which has real roots when plqi+pip2q2 — qt > 0 or I\I2 — / 3 > 0 . When 
this condition is satisfied the sign of u is positive when Zi>0. 

The extension of Clifford's method which was used for the quad­
ratic may be applied also to the cubic 

zz + (pi + ip2)z
2 + (qi + iq2)z + r\ + ir2 = 0. 

The 5 invariants are Ix=pi, 312=>pl+3qi, 3Iz = 3q2 — 2pip2, 3 / 4 = 9ri 
-3piqi+3p2q2-2p2

1pl, 27Ib = 27r2-9p2qi-2pl. When a substitution 
z~Z+ia is chosen so that in the new equation the coefficient of Z2 

is real, the new equation is 

Z3 + hZ* + (I2 + ih)Z + (I4 + I i / 2 ) /3 + ih = 0. 

36 C. F. Gauss, Oeurves, vol. 3, 1886, p. 112; vol. 8, 1900, p. 32. 
87 F. Lucas, Géométrie des polynômes, J. École Polytech. vol. 29 (1879) pp. 1-33. 

See also M. Marden, The location of the zeros of the derivative of a polynomial, Amer. 
Math. Monthly vol. 42 (1935) pp. 277-286. 
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If the roots of this equation are Zx, Z2, Z3 and those of the conjugate 
equation Tx, T2, 2̂ 3 the equation for S = Z+T may be readily found 
by elimination and its roots are the 9 quantities Zx+Tx, Z i+T2, 
Z i + r 3 , Z2+Tx, Z2+T2, Z2+Tz, Zz + T1} Zz + T2i Zz + Tz. The prod­
uct of the roots of this equation is particularly interesting as it fur­
nishes a quantity 

K = J(hl2 - jf - SJhhh + Ahhh ~ Jhl\ - All 
j = n + / i / 2 , 

which is positive when all the roots are pseudo-negative. The neces­
sary and sufficient conditions for pseudo-negative roots are l i > 0 , 
K>0, and J > 0 where these quantities are such that when positive 
they imply that Xx+X2+Xz, XXX2XZ and X2Xz+XzXx+XxX2 are 
all positive. To find the invariant I it is helpful to use the notation 

Ui = Xx + tTi, U2 = X2 + iY2, Uz = Xz + iYz, Vx = Xt - miYu 

V2 = X2- iY2, Vz = Xz - iYz, Hr8 = Ur + V8. 

I = (H22Hzz + H zzH H + HiiH22)(H2zHzi + HziHu 

+ Hl2H2z)(Hz2Hlz + H1ZH21 + H21Hz2) 

= 4(X2X3 + XzXx + XxX2) I H2zHzi + HSiH12 + Hl2H2Z |2. 

The quantities Ux, U2, Uz are identical with — Zi, —Z2and —Z3;also 

I = (w - Wt)(W - W2)(W - W3) 

where 

Wx = £/2*73 + Z73Z7i + UxU2 + V2Vz + VzVi + ViV2 

+ (Ux +U2+ Uz){Vx + V2 + Vz), 

Wx = f/iFi + U2V2 + UzVz, JF2 = U2Vz + UzVi + UxV2l 

Wz = UzV2 + UxVz + U2Vx. 

These quantities Wx, W2, Wz and a second set of quantities W{, W2, 
W{ obtained by changing the cyclic order of Vx, V2, Vz to Vz, V2, Vx 
are the roots of a sextic equation 

(Wz - AW2 + BW - C)2 = d2DD' 

where D is the discriminant of the equation for U and D' is the dis­
criminant of the equation for V. This form is indicated by the fact 
that when the equation for Ux, U2l Uz has equal roots or when the 
equation for Vx, V2> Vz has equal roots the two sets of three sums be­
come the same. Also we have identically Wx + W2 +Wi = Wx+W2 
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+ Wz, Wl W{ + Wl Wl + Wl Wl = W*Wz+ WiWi+WiW,. 
To find d we put W=0 and note that WiW*Wz- W{ Wl Wl 

= 2d(DD')1ii- But 
WxWiWt-WiWiWi 

"(Ut- Uz)(Uz- UMUi- Ü2)(Vi-Vz)(V3-V1)(V1-Vi) = (Z)D')1/2, 

consequently 2d = 1. We also have the relation 

2C= WiW»Wi+W{ Wi Wi 
- UiU2Us(vl+vl+vD+ViV2Vz(USi+ ul+ Ut)+6UiUtU,ViViV, 

+(ulu3+ u\u,+ului+ ulut+ ulut+ ului){v\vs+v\v% 

+v\vi+vlv3+v\va+vlvi) 
= R(P'3-3P'Q'+3R')+R'(P3-3PQ+3R)+6RR' 

+ (PQ-3R)(P'Q'-3R') 

where P, Q, R are the coefficients in the equation for Z\, Z2, Zz, 
P', Q', R' the coefficients in the equation for T\, T2, Z». 

Uence2C=RP'3+R'P3-6P'Q'R-6PQR'+PQP'Q' + lSRR'.Also 

B - W2Wz+ W,Wi+ WxWi = ( ul+ U\+ Us) (V2Vz+V,Vi+VxVt) 

+(U2Uz+ U3U!+ U1U2) (V2Vz+V,Vl+VlV,+V\+Vt+ Vz) 

=ö'(-p8-2e)+ö(-p,i!-e,)=-p2ö'+i"2ö-3öQ'. 

Hence 

(W-Wi)(W-Wi)(W-Wz) = W*-PP'W*+(P2Q'+P'iQ-3QQ')W 

- (RP'3+R'P3-6P'Q'R- 6PQR'+PQP'Q'+lSRR')/2 - {DD'yiyi. 

With the value W=Q+Q'+PP' the expression for I" is 

/<= {Q+Q'+PP'Y-PP'(Q+Q'+PP'Y 
+ (P*Q'+P'*Q-3QQ') (Q+Q'+PP') 

- (RP'*+R'P*-6P'Q'R- 6PQR'+PQP'Q'+18RR')/2 - (PZ?')1/V2. 

This is the expression obtained in a former paper.38 It is well known 
that 

D = P*Q* - 4PIR + 18PQR - 27R* 

while D' can be expressed in a similar way in terms of P', Q', R'. It 
should be mentioned that the conditions for pseudo-negative roots for 

88 H. Bateman, Stability of the parachute and helicopter, National Advisory Com­
mittee for Aeronautics, Report No. 80, 1920. 



19451 THE CONTROL OF AN ELASTIC FLUID 617 

the case of the cubic equation with complex coefficients should be 
derivable from the conditions given by P. Bohl39 that the roots of a 
trinomial equation may have moduli less than p. 

2.3. The case of equal roots. In the solution of linear differential 
equations with constant coefficients a double root of the associated 
algebraic equation indicates the existence of secular terms such as 
a sin (mt) + bt cos (mt) or (A+Bt)e~kt in the general solution. This 
fact was a kind of bogie in the theory of the small oscillations of a 
dynamical system because it was thought at one time that there was 
a kind of instability associated with the presence of repeated roots. In 
1858 Weierstrass40 completed the theory of normal coordinates and 
showed that in some cases at least secular terms do not occur in the 
final solution of the equations of motion. Further remarks of interest 
were made by Somoff,41 Routh42 and Stokes.43 A review of the subject 
has been given recently by Melikov.44 

Experience shows that it is better to work with the original system 
of differential equations than with the single equation obtained by 
eliminating all the variables but one. For instance, in the case of the 
well known system 

«(*" + k2x) = b(y" + k2y) = c{z" + kh) = bcx + cay + abz - s, 

say, the algebraic equation for m in an exponential factor emt occurring 
in the solutions is(m2+k2)2(m2+h2) = 0 where h2 = k2—bc/a — ca/b--ab/c. 
The equation for s is, however, sf'+h2s = 0 and so secular terms do 
not appear when 5 is calculated first and x, y, z derived from s. 

39 P . Bohl, Zur Theorie der trinomischen Gleichungen, Math . Ann. vol. 56 (1908) 
pp. 556-569. 

40 K. Weierstrass, Über ein die homogenen Functionen zweiten Grades betreffendes 
Theorem, nebst Anwendung desselben auf die Theorie der kleinen Schwingungen, 
Monatsberichte der Akademie der Wissenschaft zu Berlin, 1858, pp. 207-220; Mathe­
matische Werke, vol. 1, Berlin, 1894, pp. 233-246. See also F . Purser, Occurrences of 
equal roots in Lagrange's determinantal equation, Report of the British Association for 
the Advancement of Science, 1878, pp. 463-464. 

41 K. Somoff, Oscillations of systems of particles, algebraic problem, Mémoires de 
l'Académie des Sciences de Saint Petersburg (Akademiia Nauk), no. 14,1879, 30 pp . 
The related paper of C. Jordan, Sur les oscillations infiniment petites des systèmes ma­
tériels, C. R. Acad. Sci. Paris vol. 74 (1872) pp. 1395-1399, is reviewed unfavorably 
in Fortschritte der Mathematik vol. 4 (1872) pp. 471-472. 

42 E. J. Routh, Rigid dynamics, par t 2, pp. 84, 190. 
48 G. G. Stokes, Explanation of a dynamical paradox, Messenger of Mathematics 

vol. 1 (1872) pp. 1-3; Mathematical and physical papers, vol. 4, pp. 334-335. 
44 K. V. Melikov, Über das Theorem von Weierstrass und Routh, Annals of the In­

stitute of Mines, Leningrad, vol. 10 (1936) pp. 71-76. 
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The case of equal roots is connected of course with the phenomenon 
of resonance and there are many cases in practice in which a number 
of identical dynamical systems are coupled together particularly in 
the construction of acoustical, electrical and mechanical filters. Much 
depends on the nature of the coupling and even when equal roots do 
not occur in the final analysis there are interesting phenomena. The 
use of symmetrical arrangements is sometimes advantageous on ac­
count of the simplicity of the analysis. 

In gas producing plants in which there is one exhaust regulator for 
two coke ovens there seems to be an idea that symmetry must be 
avoided on account of a possible interaction or resonance between two 
coke ovens which would make the regulator unstable. Thus Dougill45 

remarks : "The interaction which so often occurred when two retort 
houses of equal size were connected to a common main which led to 
one exhaust governor could be remedied by provision of a time lag, 
preferably in the exhaust governor." 

The question may be raised whether the troubles encountered can 
really be attributed to the equality in size and an answer to this ques­
tion cannot be given without a careful analysis of the precise setup. 
In the meantime, however, it may be of interest to examine some of 
the complications which arise when use is made of a time lag in dy­
namical or electrical systems. 

3. T H E TRANSCENDENTAL PROBLEM 

3.1. Time lag in control systems. Long ago the delayed action of a 
regulating system was recognized as one of the primary causes of the 
hunting of governed engines.46 The effect of time lag has consequently 
been studied by many investigators, particularly by D. R. Hartree, 
A. Porter, A. Callender, A. B. Stevenson,47 H. König,48 J. G. Ziegler 

45 G. Dougill, Retort house and exhauster governing of gas works, Engineering vol. 144 
(1937) p. 144. 

46 See for instance, J. Swinburne, The hunting of governed engines, Engineering 
vol. 58 (1894) p. 247; Practice, The "hunting" of steam engine governors, Engineering 
vol. 71 (1901) p. 216. 

47 A. Callender, D. R. Hartree and A. Porter, Time-lag in a control system, Trans. 
Roy. Soc. London Ser. A. vol. 235 (1936) pp. 415-444. D. R. Hartree, A. Porter, 
A. Callender and A. B. Stevenson, Time-lag in a control system. II, Proc. Roy. Soc. 
London Ser. A. vol. 161 (1937) pp. 460-476. A. Callender and A. B. Stevenson, 
Proceedings of the Society of the Chemical Industry (Chemical Engineering Group) 
vol. 18 (1936) p. 108. See also L. Nisolle, Sur la stabilité des régulateurs à impulsions 
retardies ou amorties, C. R. Acad. Sci. Paris vol. 211 (1940) pp. 762-765. 

48 H. König, Periodische und aperiodische Schwingungen an empfindlichen Rege-
lan ordnungen, Zeitschrift für Technische Physik vol. 18 (1937) pp. 426-431. See also 
D. Stein, Untersuchung der Stabilitatsbedingungen bei verzögerter Regelung, Elektrische 
Nachrichten Technik vol. 20 (1943) pp. 205-213. 
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and N. B. Nichols.49 Time lag was also considered by H. L. Hazen50 

in his work on servo mechanisms and by N. Minorsky51 in his study 
of control problems. 

The effects of time lag have been considered usually by three dis­
tinct methods : 

(1) By the use of Taylor's theorem and a neglect of small terms so 
that linear differential equations are obtained. 

(2) By the use of differential difference equations or equations of 
mixed differences. 

(3) By the use of integral equations of the Poisson-Volterra type. 
The first method is explained in a general discussion of control 

problems by the editorial staff of The Engineer and by N. Minorsky 
who regards the differential equation as an asymptotic form and gives 
four different types. In a simple case a body is supposed to oscillate 
under the influence of a restoring force R(t — k) proportional to the 
body's displacement at a previous instant and also under the influence 
of a damping depending partly on the body's instantaneous velocity 
and partly on its velocity at a previous time t — h. The equation of 
motion is supposed, indeed, to be of the type52 

*" + Qx' + Nf(t - A) + Pf(t - k) = 0 

where the time lags h and k are regarded as independent of t. In the 
approximate theory ƒ'(* — h) andf(t — k) are replaced by f(t)— hf"(t) 
and ƒ(/) — kf(t)+k2fn(t)/2 respectively and then x is used in place of 
ƒ (/). The resulting equation is 

(1 - Nh + Pk2/2)x" + (Q + N - Pk)x' + Px = 0. 

When Q = N = 0 the lag in R gives a negative damping and so oscilla­
tion with increasing amplitude may be expected to occur. When N = 0 
and Qf^O the negative damping may be overcome by positive damp­
ing depending on Q. When N = 0 both N and Q may tend to over­
come the negative damping but if h is large the coefficient of x" may 
become negative and completely alter the character of the motion. 
Minorsky53 indicates an asymptotic form in which the apparent re-

49 J . G. Ziegler and N. B. Nichols, Process lags in automatic-control circuits, Trans­
actions of the American Society of Mechanical Engineers vol. 65 (1943) pp. 433-444. 

50 H. L. Hazen, Servo mechanisms, Journal of the Franklin Institute vol. 218 (1934) 
pp. 279-331, 543-580. 

81 N. Minorsky, Control problems, ibid. vol. 232 (1941) pp. 451-488. 
52 Editorial Staff, The damping effect of time lag, T h e Engineer vol. 163 (1937) 

p. 439. 
63 N. Minorsky, Self-excited oscillations in dynamical systems possessing retarded 

actions, Transactions of the American Society of Mechanical Engineers vol. 64 (1942) 
pp. A65-A71, discussion by H. Poritzky, pp. A195-A196. 
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storing term is different from Px, but by the multiplication of the 
equation by a suitable factor this form may be reduced to the previ­
ous ones in which only the coefficients of x' and xn are affected by 
the lags. 

The indications of the approximate theory need to be checked by 
exact analysis but they are such as to make it plain that the effects 
of time lag may be quite serious. 

When there is a single time lag which is treated as constant some 
progress may be made with the aid of the known theory of linear 
equations of mixed differences. The particular equations discussed by 
Hartree and his collaborators are 

u'(%) = f(x) + v(x) — cu(x), 

- v'(x + 1) = pu{x) + qu'(x) + ru"(x) 

where p% q, r and c are real constants. When ƒ(x) = 0 the free motion 
is described by means of terms of type u(x)=K exp (kx) where k 
is determined by means of the transcendental equation 

k(k + c) « e~h{p + qk + rk*). 

This equation and some related equations are discussed chiefly by 
graphical methods but for the equation 

z*eB + aoz + ai = 0 

an approximate solution s = log (a0/b)+ib, J = (2w+l/2)7r+&~1[log 
(ao/ty—ai/do], is given for the value of z for a high harmonic on the 
supposition that b is large compared with ai/a0 and the real part of 
2. This approximation may hold in some cases for the fundamental 
and if it does it indicates that if the fundamental is positively damped 
the higher harmonics are more strongly damped. 

Transcendental equations of the form e' = rational function of z are 
of frequent occurrence. A simple equation of this type z = a — ce~' oc­
curs in economics54 in the work of Kalecki, Frisch, Holme, James and 
Belz. It is a generalization of an equation considered by Euler65 in 
1750. 

In his discussion of control problems König avoids the assumption 

54 M. Kalecki, A macrodynamic theory of business cycles, Econometrica vol. 3 
(1935) pp. 327-344. R. Frisch and H. Holme, ibid. pp. 225-239. R. W. James and 
M. H. Belz, ibid. vol. 4 (1936) pp. 157-160. 

85 L. Euler, Investigate curvarum quae evolutae sui similes producunt, Akademiia 
Nauk vol. 12 (1750) pp. 3-52. See also M. Alle, Ein beitrag zur Theorie der Evoluten, 
Akademie der Wissenschaften Wien (lia) vol. 113 (1904) pp. 53-70. 
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of a constant time-lag and obtains an integral equation of Poisson's 
type, 

x(t) +m f k(t- T)x(T)dT = x0(t), 
J o 

where x(t) is the variable quantity to be regulated, x0(t) is the varia­
tion of this quantity when there is no control, m is the factor of 
amplification and kit) is a function of type I'(t), where /(/) is the 
influence function which electrical engineers call the transfer function. 
The function k(t) is generally zero up to time t0i it then rises gradually 
in value until it reaches a peak value and then remains practically 
constant from a time h on. The graph of k(t) generally has a peak but 
in a simple case worked out by König, k(t) is constant for U<t<h 
and is zero for other values of t. In a stable kind of regulation the free 
motion with xQ(t) = 0 is damped. When undamped oscillations or 
growing oscillations can arise the system may be capable of spontane­
ous oscillation. 

König seeks the condition tha t there may be a solution of type 
x(t)=A exp (iwt — ht) and obtains the conditions 

I k(u)ehu sin (wu)du = 0, I k(u)ehu cos (wu)du = 0. 

The limit of stability is then given by h~Q. The motion due to a 
transitory disturbance may be found by Poisson's method of succes­
sive approximations66 in which x{t) is expanded in powers of m or it 
may be found by a method recommended by V. Pareto57 and the 
present author68 in which a relation is found between the generating 
functions 

ƒ» 00 /» 00 

e-"x(t)dt, K(%) = I e-xtk(t)dtt 
o J o 

Xo(z) = I e~"xo(t)dt. 
J o 

M S. D. Poisson, Mémoire sur la théorie du magnétisme en mouvement, Académie 
des Sciences, Paris, 1826, 130 pp. (pp. 28-30). 

57 V. Pareto, Sur les f onctions génératrices à" Abel, J . Reine Angew. Math. vol. 110 
(1892) pp. 29-323. 

88 H. Bateman, Report on the history and present state of the theory of integral equa­
tions, British Association for the Advancement of Science, 1910, pp. 345-424 (p. 394); 
An integral equation occurring in a mathematical theory of retail trade, Messenger of 
Mathematics vol. 49 (1920) pp. 1-4. 
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3.2. Feedback. An early use of feedback to regulate a water clock 
has been ascribed to James Watt59 who apparently used a pump to 
maintain the desired constant level in the reservoir from which the 
water flows. The rate of flow should be constant if the level of the 
water in a receiving vessel is to give a correct measure of time. A 
cascade system of reservoirs which kept this rate very nearly con­
stant for a short time was adopted long ago in the design of a water 
clock of Canton, China, known as "Hon-woo-et-low" (copper jars 
dropping water). James Arthur60 saw this clock in 1897 and was told 
that it had been in existence for over 3000 years, being known as the 
clock of the street arch. 

A mathematical theory of a cascade system of reservoirs based 
upon the formula for the discharge of a weir was given by E. Maillet61 

about 1905. The system of differential equations is nonlinear but some 
interesting conclusions are drawn relating to the existence of a steady 
state and the manner in which it is approached. The problem of sta­
bility of the steady state is considered and some attention is given 
also to the case in which water is fed into the reservoirs from an out­
side source. When in addition feedback is introduced there are many 
mathematical problems to be solved. Maillet's analysis is of some 
mathematical interest as it led him to researches on almost periodic 
functions. 

Feedback has been much used in recent years in systems employing 
vacuum tubes and amplifiers. In his description of stabilized feedback 
amplifiers H. S. Black62 says: "By building an amplifier whose gain is 
deliberately made, say, 40 decibels higher than necessary (10000 fold 
excess on energy basis) and then feeding the output back on the input 
in such a way as to throw away the excess gain, it has been found 
possible to effect extraordinary improvement in constancy of ampli­
fication and freedom from nonlinearity." 

In the simplified mathematical theory which has been developed by 
59 See the discussion by Field of the paper by J. Woods, Exhibition and de­

scription of the chronometric governor, invented by Messrs E. W. and C. W. Siemens, 
Minutes and Proceedings of the Institute of Civil Engineers, London, vol. 5 (1846) 
pp.255-265. 

60 James Arthur, Time and its measurement, Windsor, Chicago, 1909. 
61 E. Maillet, Sur la vidage des systèmes de réservoirs, C. R. Acad. Sci. Paris vol. 140 

(1905) pp. 712-714; Sur les équations différentielles et les systèmes de réservoirs, ibid, 
vol. 147 (1908) pp. 966-968; Sur les systèmes de réservoirs, ibid. vol. 149 (1909) 
pp. 105-107. See also Bull. Soc. Math. France vol. 33 (1905) pp. 129-145; Annales 
des Ponts et Chaussées (1906) pp. 110-149; J. École Polytech. (2) vol. 13 (1909) pp. 
27-56; J. Math. Pures Appl. (6) vol. 9 (1913) pp. 171-231. 

62 H. S. Black, Stabilized feedback amplifiers, Bell System Technical Journal vol. 13 
(1934) pp. 1-18. 
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the electrical engineers63 the effects of inertia or induction are neg­
lected and the electrical system is supposed to be built up from simple 
delay elements and elements with a constant type of amplification 
over a limited range. The result of feedback is thus represented by 
an equation 

x = — Qx 

where x denotes the amplification factor which is the product 
W1W2 • • • mn of a number of individual amplification factors and Q is 
the product of a number of differential operators of type 

q = 1/(1 + rp), p = d/dt. 

The differential equation for x is 

[(1 + np)(l + r2p) . . . (1 +rnp) + fi]x = 0 

and when a particular solution is of form x=aezt, z satisfies the alge­
braic equation obtained by replacing p by z. A graphical method of 
finding the condition for stability has been given by H. Nyquist.64 

I t is clear from an algebraic standpoint that there is only one 
condition because ix enters into only one of Hurwitz's determinants 
and the others are automatically positive on account of the time con­
stants r. For a given set of time constants the system will generally 
be stable when /x lies below a certain critical value /x0 and unstable for 
Me Mo- When jLt=Mo there can be one or more oscillations with con­
stant amplitude. In the graphical form of the criterion there is sta­
bility when the point ( — 1, 0) lies outside a certain curve traced out 
by a radius vector representing the complex quantity /x(? when p is 
replaced by iœ. The graphical method has been discussed by others.65 

The differential equation for x can, of course, be replaced by an in­
tegral equation which is of the type considered by König or of a 

63 D. G. Prinz, Contributions to the theory of automatic controllers and followers, 
Journal of Scientific Instruments vol. 21 (1944) pp. 53-64. 

64 H. Nyquist, Regeneration theory, Bell System Technical Journal vol. 11 (1932) 
pp. 126-147; Annales des Postes, Télégraphes et Téléphones, Paris vol. 23 (1934) 
pp. 1010-1016. See also K. Kupfmüller, Über die Dynamik der selbsttâgigen Verstârk-
ungsregler, Elektrische Nachrichten Technik vol. 5 (1928) pp. 459-467. 

65 R. Feiss, Bestimmung der Regelungsstâbilitat an Hand des Vektorbildes, Zeitschrift 
für der Verein Deutsches Ingenieures vol. 84 (1940) pp. 819-824. E. Peterson, 
J. G. Kreer and L. A. Ware, Regeneration theory and experiments, Proceedings of the 
Insti tute of Radio Engineers vol. 22 (1934) pp. 1191-1210, Bell System Technical 
Journal vol. 13 (1934) pp. 680-700. D. G. Reid, Necessary conditions f or stability (or 
self oscillation) of electrical circuits, Wireless Engineers vol. 14 (1937) pp. 588-596. 
C. A. A. Wass, Feedback amplifiers, Nature vol. 150 (1942) pp. 381-382. 
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slightly more general type. In this connection it may be worth while 
to recall the investigations of P. Hertz66 and G. Herglotz67 on natural 
vibrations of an electron. The integral equation considered was then 
of the form 

x(t) - Ç\(t~ T)q(T)dT 
J o 

and the problem was to find the complex roots of the equation 

f e-*>Tq(T)dT = 1. 
J o 

The foregoing theory of feedback is based on linear differential 
equations with constant coefficients and is only approximate. Ac­
tually the resistances and capacities may vary with frequency and 
may even vary with time. In radio-telephony the voice acts so as to 
modify the resistance of the oscillatory circuit or the capacity of its 
condenser. J. R. Carson68 proposed a differential equation with peri­
odic coefficients as a basis of a theory of modulation and the theory 
has been worked out more fully by O. Emersleben,69 W. L. Barrow,70 

and A. Erdélyi.71 Conditions of stability are obtained with the aid 
of the theory of integral equations and of asymptotic solutions of 
linear differential equations. Feedback is not always desirable. In a 
discussion of receivers and transmitters for demonstrating frequency 
modulation M. Hobbs72 says that in order to avoid acoustical feed­
back it is necessary to locate the signal generator and microphone in 
one studio and the receivers in another. 

When the differential equations of the system are nonlinear the 
theory of stability or of sustained oscillations is more difficult but 

66 P. Hertz, Die Bewegung eines Elektrons unter dent Einflusse einer stets gerichteten 
Kraft, Math. Ann. vol. 56 (1908) pp. 1-86. 

•7 G. Herglotz, Über die Integralgleichungen der Elektronentheorie, ibid. pp. 87-106. 
88 J. R. Carson, Notes on the theory of modulation, Proceedings of the Institute of 

Radio Engineers vol. 10 (1922) pp. 57-64. 
69 O. Emersleben, Natural oscillation of circuits containing variable capacities and 

resistances, Physikalische Zeitschrift vol. 22 (1921) pp. 393-400. 
70 W. L. Barrow, Frequency modulation and the effects of a periodic capacity varia­

tion in a non-dissipative oscillatory circuit, Proceedings of the Institute of Radio 
Engineers vol. 21 (1933) pp. 1182-1202. 

71 A. Erdélyi, Über die f reien Schwingungen in Kondensatorhr eisen mit periodisch 
veranderlicher Kapazitat, Annalen der Physik (5) vol. 19 (1934) pp. 585-622. 

n M. Hobbs, A low-power transmitter for demonstrating F-M receivers, Elec­
tronics vol. 14 (1941) pp. 20-23, 
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there is a large literature on the subject.73 Nonlinear feedback oscilla­
tions have been discussed by G. Hakata and M. Abe.74 

3.3. Transcendental equations in the theory of integral equations. 
With the abbreviations 

(xgy) = I I x(s)g(st t)y(t)dsdt, (uv) = I u(s)v(s) 
J o *J o J o 

a brief study will be made of the linear integral equations 

(1) f(s) = f g(s, t)F(t)dt + X f h(s, t)F(t)dt + X2 f k(s, t)F(t)dtt 

(2) ƒ(*) = F(s) + X f *(*, 0F(O* + X2 f *(*, t)F(t)dt. 
J 0 *^ 0 

When X is a complex quantity a+^'ô where a and 6 are real and f(s) 
is regarded as independent of X and real, the solution F(t) will also 
be a complex quantity u(t)+iv(t) with u(t)y v(t) real provided the 
kernels g (s, t), h(s, t), k(s, t) are real for real values of s and t which 
lie between 0 and 1. The combination u(t)—iv(t) will be denoted by 
the symbol F*(t) and for both equations the properties of the function 

w(X) = f f(s)F(s)ds9 w(\*) m f f(s)F*(s)ds 
•Jo J o 

will be studied. If c is a real constant the zeros and poles of the func­
tion w(\) — c will be pseudo-negative when the same is true for the 
zeros and poles of the function wÇK*)~c. 

In the important case in which g(s, t)*=g(t, s), h(s, t)=h(t1 s), 
k(s, t)=k(t, s) it is readily seen that in the two cases 

w(X*) = (ugu) + (vgv)+a [(uhu) + (vhv) ] + (a2 — J2) [(uku) + (vkv) ] 

+ ib [(uhu) + (vhv) ]+2iab [(uku) + (vkv) ], 

w(\*) = (uu) + (vv)+a [(uhu) + (vhv) ] + (a*~ b*) [(uku) + (vkv) ] 

+ ib [(uhu) + (vhv) ]+2iab [(uku) + (vkv) ]. 

The right-hand sides of these equations are zero when X is such that 
w(\*) = 0 and also when X is such that F(t) exists when ƒ(s)= 0. In 
the important case in which the functions h and k are of positive type 

78 K. Heegner, The self-oscillating vacuum tube, Arkiv for Elektrot. vol. 9 (1920) 
pp.127-152. 

74 G. Hakata and M. Abe, Non-linear differential feedback oscillationst Nippon 
Electrical Communication Engineering no. 5 (1939) pp. 526-536. 
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the integrals (uhu), (vhv), (uku), (vkv) are all positive and so when the 
imaginary terms on the right are equated to zero it is seen that 
either a is negative or b is zero. When b is zero the equation obtained 
by equating the real part of the right-hand side to zero indicates that 
a is negative in case (2') and this is true also in case (1') if g(s, t) is 
also of positive type. If c is negative it is readily seen that a must be 
negative when w(\*) =c. 

When k(s, t)=0 and g (s, t), h(s, t) are of positive type it is known 
that the zeros and poles of the function w(K) are all negative and occur 
alternately. The situation is analogous to that which occurs in the 
theorem of Routh, Jouguet and Chipart relating to the even and odd 
parts of an algebraic equation with pseudo-negative roots and so the 
function w(K) can be used quite often to construct a transcendental 
equation with only pseudo-negative roots. As an example of the first 
theorem we take equation (2) with 

h(s, f) = pst, k(s, t) = s(l - t) or /(l - s) 

according as s^t; the equation for X is then 

coth X = (1/X) - (1/p) 

when X is a pole. When the equation is written in the form 

ch (X) - (1/X) sh (X) + (1/P) sh (X) = E(X) + 0(X) = 0 

it is seen that 

E(z^) = ch (s1'2) - z-1'2 sh (s1'2), z-^Oiz1'2) = sr1 '2 sh 01 '2). 

I t is readily seen that the functions on the right are transcendental 
functions of z with negative zeros which occur alternately. 

In the second theorem if h(s, i)=s(l—t) or t(l—s) according as 
5 ^ t it is found that if 

C(z) = f ch (zt)f(t)dt, S(z) = f sh (zt)f(t)dt 
J o ^o 

then the equation 

0 = sh (z) + z sh (*)(ƒƒ) - z sh2 (z)S(z)C(z) + sh (z) ch (z)[S(z)]2 

has only pseudo-negative roots. 

4. T H E SEPARATION OF VIBRATIONS 

4.1. Acoustical filters. The early work of Poisson on the propaga­
tion of sound along a branched pipe was followed by the inventions 
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of John Herschel and Quincke for the production of interference of 
waves by the rejunction of the divided branches of a pipe. The theory 
based on the idea of velocity potential and simplified boundary condi­
tions was improved by Stewart and others and then replaced by a the­
ory of lumped impedances so that the theory of acoustic filters could 
be developed along the same lines as the theories of mechanical and 
electrical filters. A good account of the theory from this standpoint 
is given in the book of Stewart and Lindsay. 

The filtering action of a regularly spaced series of similar sheets of 
muslin was considered by Rayleigh75 in the period 1887-1896 and is 
described in a passage inserted in the 1896 edition of his Theory of 
sound. He states that if a moderate number of such sheets be placed 
parallel to one another and at such distances apart that the partial 
reflections agree in phase, then a sensitive flame may be powerfully 
affected. With the aid of a device for adjusting the interval between 
two consecutive sheets it is easy to find how this interval depends 
on the wave length X «when the condition for effective reflexion is 
satisfied. Rayleigh states that with a=X/2 the condition is satisfied 
for normal incidence but in the actual experiment it is more conven­
ient to use oblique incidence and the calculations necessary for this 
case are readily made. 

In his mathematical investigations76 Rayleigh considered the trans­
verse vibrations of a stretched string periodically loaded, but the 
analysis is rather difficult as it depends on the properties of the solu­
tions of differential equations with periodic coefficients and use is 
made of infinite determinants as in the work of G. W. Hill. The vibra­
tions of this type of string in which the density varies continuously 
have been studied further by Strutt77 but more progress has been 
made in the study of the older problem in which the density of the 
string varies discontinuously. This case will be considered later for 
both transverse and longitudinal vibrations. The former case is inter­
esting on account of analogies with optical phenomena, the latter on 
account of the analogies with acoustical phenomena. 

The problem of the loaded string was much studied by the great 
78 Lord Rayleigh, Iridescent crystals, Proceedings of the Royal Institute of London 

vol. 12 (1889) pp. 447-449; Nature vol. 40 (1889) pp. 227-228; Scientific papers, 
vol. 3, pp. 264-266 (see also pp. 1-14, 204-212); Theory of sound, vol. 2, p. 311. 

76 Lord Rayleigh, On the maintenance of vibrations by forces of double frequency, 
and on the propagation of waves through a medium endowed with a periodic structure, 
Philosophical Magazine vol. 24 (1887) pp. 145-159; On the remarkable phenomenon 
of crystalline reflexion described by Stokes, ibid. vol. 26 (1888) pp. 256-265. 

77 M. J. O. Strutt, Eigenschwingungen einer Saite mit sinusformiger Massenver-
teilung, Annalen der Physik vol. 85 (1928) pp. 129-136. 
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mathematicians of the eighteenth century and many of their results 
are given by Routh in his Rigid dynamics. Routh also mentions that 
in April 1875 Lord Kelvin studied the vibrations and waves in a 
stretched uniform chain of symmetrical gyrostats connected together 
by universal flexure joints. His thoughts returned to this subject in 
his Baltimore lectures of 1884. 

The theory of the loaded string became definitely associated with 
the theory of mechanical filters in 1898 when Godfrey and Lamb pub­
lished their researches and when Campbell and Pupin became inter­
ested in the properties of the loaded electrical transmission line. 
Acoustic filters are much used as mufflers for internal combustion 
engines and as may be seen from the lists of patents in the Journal 
of the Acoustical Society of America baffles, holes and side branches 
in the exhaust pipe are among the devices used. Resonating side 
branches sometimes communicate with one another through parti­
tions of absorbing material. Even a long pipe has a filtering action as 
the attentuation is higher for sound of some frequencies than for 
sound of some other ranges of frequency. Problems relating to pipes 
will be discussed in the section dealing with hydrodynamics in which 
some consideration will be devoted not only to the elimination of 
noise but also the reduction of dangerous vibrations in hydraulic pipe 
lines. 

4.2. Passage of sound through a slab. Let p, v, and Z=pv be the 
density velocity of sound and radiation resistance of a homogeneous 
slab of thickness a which is of infinite extent in any direction parallel 
to the plane faces. Let p, v', Z'=pV be the corresponding quantities 
for the medium outside the slab. For normal incidence of waves on 
the face x = 0 the velocity potentials are 

0 = J)ei^t-xh') _J_ Eeiw(t+x/v>) for x g 0, 

0 = Beiv>(t-x/v) _j_ çeiw(t+x/v) for 0 ̂  ^ g Ö, 

0 = Aeiw^-Z,vf) for x è a. 

The boundary conditions are 

p'(D + E) - p(B + C), p(Be~ia + Cei8) = p'Ae***', 

is'(E - D) = is(C - B), is(Ceia - Be~ia) = - is'Ae-"' 

where s = wa/v, s' = wa/v'. Thus 

A/D = 2e"/[2 cos (s) + i(Z/Z' +Z'/Z) sin (s)] 

and the coefficient of reflection is 



19451 THE CONTROL OF AN ELASTIC FLUID 629 

r = (zyz - z/z')[4 cot2 (s) + (zyz - z/z')2]-1'2. 
This is the formula of Lord Rayleigh.78 Interesting applications of 
this formula to the reflection and transmission of sound through parti­
tions have been made by Boyle69 and Davis.80 It is clear that r = 0 
when sin (s)=0 and so there are certain critical thicknesses a for 
which there is no reflection of sound waves of the prescribed fre­
quency w/2ir. Davis regards the formula as applicable to the trans­
mission of sound through light thin panels such as sheets of paper, 
sailcloth or fibre board. When a is very small there is a tendency for 
the reduction factor of the energy to vary as the square of the fre­
quency ƒ of the incident sound. With materials as light as paper a 
term due to air damping is important and there is less variation with/. 
For heavy panels such as two inch boards or brick walls the reduction 
factor is less than that given by Rayleigh's formula. Davis has given 
a formula 

Reduction factor = (l/2R)2[(r + 2R)* + (m/w)2(w2 - wl)] 

which indicates that resonances can account for a reduced insulating 
value. This formula is derived from a differential equation of type 

mi + (r + 2R)£ + Si- = 2R£0e
i»t, w0 = (S/tn)1'2. 

To account for the behavior of actual panels it seems necessary to 
assume that there are several modes of vibration with which there 
can be resonance. This is in accordance with the general theory of 
the vibration of plates and with experiment as is pointed out by Davis 
and Littler.81 

In the work of Boyle on the influence of the thickness of the plate 
on the transmission of sound, use was made of a high /(13500(W, 
300000^ and 528000<^). It was found that when a was a large multi­
ple of X/4 (where X is the wave length in the plate) there was a maxi­
mum of energy reflected and a minimum of energy transmitted. When 
a was a few integral multiples of X/2 there was an almost complete 
transmission of energy. Thus in the latter case the plate acted as a 

78 Lord Rayleigh, Theory of sound, vol. 2, 1896, p . S$. 
79 R. W. Boyle, Transmission of sonic and ultrasonic waves through partitions, 

Nature vol. 121 (1928) pp. 55-56. See also R. W. Boyle and D. K. Froman, Canadian 
Journal of Research vol. 1 (1929) pp. 405-424. 

80 A. H. Davis, Transmission of sound through partitions, Philospohical Magazine 
(7) vol. 15 (1933) pp. 309-316. 

81 A. H. Davis and T . S. Littler, The measurement of transmission of sound by parti­
tions of various materials, Philosophical Magazine (7) vol. 3 (1927) pp. 177-194, 
vol. 7 (1929) pp. 1050-1062. 
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high pass filter and in the former case as a high frequency rejector. 
This work has been continued by Boyle and Sproule82 with the aid of 
a torsion pendulum and the previous conclusion confirmed. 

4.3. Multiple partitions. The passage of sound through several slabs 
of different materials is of some interest but the analysis is rather 
complicated. The case of three different media was considered by 
Brillié and his work is discussed by Stewart and Lindsay. The 
case of five media two pairs of which are alike in properties and are 
symmetrically related to a third medium in the middle is of much 
interest in relation to the sandwich type of radiator and receiver 
which was used at one time in underwater work. The natural vibra­
tions of such a sandwich are of interest. 

The vibrations of a column of gas, one portion of which is at a tem­
perature Ti and the other at a temperature T2 have been studied by 
Lees83 in connection with some experiments on the vibration of trav­
elling flames made by Coward and Hartwell.84 Lees considered 3 
cases : 1°. Tube closed at both ends. 2°. Tube open at both ends. 
3°. Tube closed at one end and open at the other. In the last named 
case the frequency of vibration is determined by the equation 

(ni/Fx) tan (tnnr/2) = - (n2/F2) tan [(w2 - 1)(TT/2)] 

where n\ is the fundamental frequency when the whole column is at 
temperature Ti, n2 is the corresponding frequency when the tempera­
ture is T2l F\ and F2 are the moduli of adiabatic elasticity for longi­
tudinal displacements in the column at the two temperatures and 

mi = na/tiic, m2 = nb/n2c, a + b = c 

where a, b are the lengths of the two portions of the tube. 
Meyer observes that it is well known that the sound-damping ac­

tion of a homogeneous wall increases with its thickness provided the 
exciting frequency is sufficiently higher than the natural frequency 
of vibration of the wall—a condition that is usually satisfied. When 
several such walls have air between them the composite wall acts as 
a mechanical damper because the layers of air form buffers if they are 
small compared with the wave length. If m denotes the mass of the 

82 R. W. Boyle and D. O. Sproule, Transmission of sound energy and thickness of 
plate transmitter at normal incidence-ultrasonic method, Canadian Journal of Research 
vol. 2 (1930) pp. 3-12. 

83 C. H. Lees, Free periods of a composite elastic column or composite stretched wiret 
Proceedings of the Physical Society of London vol. 41 (1929) pp. 204-213. 

84 J. F. Coward and F. J. Hartwell, Extinction of methane flames by diluent gases, 
Journal of the Chemical Society vol. 129 (1926) pp. 1522-1532. 
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wall in grams per square centimeter, if / is the length of an air buffer, 
if v is the velocity of sound and if p is the density of the air, the 
fundamental natural frequency is 

ƒ« = (r/xJOrf/m)1'*. 

This formula has been confirmed over a frequency range from 40(W 
to 7000^^. Meyer85 states that in such composite walls the velocity of 
transmission decreases as the frequency increases but the damping 
does not seem to increase very rapidly. Investigations led to the fol­
lowing rules for the design of composite walls. The dimensions should 
be such tha t /o is less than the practically important range of ƒ s and 
the cross vibrations in the air buffers should be damped. By following 
these rules sound can be effectively damped without the use of heavy 
walls. A four-fold composite wall forty centimeters thick (153/4 inches) 
weighing SO kilograms per square meter (10.25 pounds per square 
foot) gave better insulation than a solid brick wall weighing 1000 kg. 
per sq.m. The effect of composite walls has been discussed by many 
other writers86 and the mathematical theory has been elucidated by 
Constable.87 For ƒ > / 0 insulation is at first decreased as the separation 
of the walls is increased, but it afterwards increases continuously up 
to a point at which the separation is approximately X/4. After this 
point it decreases to a second minimum and thereafter minima occur 
at successive increases of X/2 in the separation of the walls. The first 
minimum at which the insulation can be less than that of one com­
ponent alone can be attributed to the effect of air coupling. 

The properties of a double partition constructed from dissimilar 
components were examined by Renault88 and by Constable.87 The 
latter found that at ƒ's for which the resonances of the components 

85 E. Meyer, Die Mehrfachwand als akustisch-mechanische Drosselkette, Zeit-
schrift für Technische Physik vol. 16 (1936) pp. 565-566; Über das Schallschluckver-
m'ôgen schwingungsfâhiger, nichtpöroser Stoffe, Elektrische Nachrichten Technik vol. 
13 (1936) pp. 95-102. 

86 E. Wintergast, Theorie der Schalldurchlassigkeit von einfachen und zusammenge-
setzten Wanden, Schalltechnik vol. 4 (1931) pp. 85-91, vol. 5 (1932) pp. 1-8. J. E. R. 
Constable and G. H. Aston, The sound insulation of single and complex partitions, 
Philosophical Magazine (7) vol. 23 (1937) pp. 161-181. E. Lubcke and A. Eisenberg, 
Zur Schallübertragung von dunnen Einfachwânden, Zeitschrift Technische Physik 
vol. 18 (1937) pp. 170-174. 

87 J . E . R. Constable, The acoustical insulation afforded by double partition con­
structed from similar components, Philosophical Magazine (7) vol. 18 (1934) pp. 321— 
343; Acoustical insulation afforded by double partitions constructed from dissimilar com-
ponents, ibid. vol. 26 (1938) pp. 253-259. 

88 L. Renault, La transmission du son à travers cloisons métalliques, Revue 
d'Acoustique vol. 6 (1937) pp. 69-101. 



632 H. BATEMAN [September 

and the air coupling resonance can be neglected, the insulation to be 
obtained from a double partition for a given total weight and thick­
ness is greatest when the components are similar. 

The transmission of sound by a series of equidistant similar parti­
tions has been studied by Hurst89 whose results are very similar to 
those of Lamb in his first example of a mechanical filter (§4.5). The 
method of indicating the regions of attenuation is also similar to that 
of Lamb. Hurst gives also a theory of transmission through a series of 
circular panels each of which is set into a rigid wall. In this theory 
effects of diffraction are taken into account. 

4.4. Results found by energy methods. The absorption of sound by 
a porous wall was studied theoretically by Rayleigh with the aid of a 
theory of the propagation of sound in a capillary tube which will be 
examined in §6.89a There are, however, some results which can be 
obtained by energy methods which may be mentioned here for com­
parison with the other results. 

4.4a. The passage of energy through a single absorbing wall. By 
means of an extension of the analysis of Buckingham and Eckhardt,90 

Davis91 has obtained the following equations for two rooms separated 
by an absorbing wall : 

4 7 / + vaSI = 4£ + vkWI, WJi + vaxSih = vkWL 

The first equation refers to the room containing the source of sound 
which is supposed to emit energy at a constant rate E while operative. 
W denotes the area of the wall used as a partition between the two 
rooms. V, Vi are the volumes of the rooms; S> Si are the respective 
total areas of the exposed surfaces of the walls of these rooms (includ­
ing the partition) ; a, a,\ are the mean fractions of incident energy lost 
by the respective rooms at each reflection by absorption or transmis­
sion to other rooms; v is the velocity of sound and k is a factor of type 
a for the partition. In the steady state / = A = 0 so the maximum 
values of I and I\ are J and J\ respectively, where 

89 D. G. Hurst, The transmission of sound by a series of equidistant partitions, 
Canadian Journal of Research vol. 12 (1935) pp. 398-407. 

89a References to §§5 and 6 refer to material which the author hopes will appear 
after the war. 

90 E. A. Eckhardt, The acoustics of rooms, reverberation, Journal of the Franklin 
Institute vol. 195 (1923) pp. 799-814. 

91 A. H. Davis, Reverberation equation for two adjacent rooms connected by an in­
completely sound-proof partition, Philosophical Magazine (6) vol. 50 (1925) pp. 75-80. 
See also C. F. Eyring, Methods of calculating the average coefficient of sound absorption, 
Journal of the Acoustical Society vol. 4 (1933) pp. 178-192. 
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4:EaiSi 
j = , j « jkW/iaiSx). 

vÇaSaxSi - k2W2) 
At time t after the source has been cut off 

I X2 — Xo Xi — Xo 

J X2 — Xi Xi — X2 

I\ X2 Xi 

/ i X2 — Xi Xi — X2 

where 

X2j 
(v/8){iV + Ni =F [(iVi - N)2 + 4^W 2 /FF 1 ] 1 / 2 } , 

TV = aS/V, Ni =- ai5i /7i , X0 = 4F1XiX2/(^i5i). 

4.4b. The passage of waves through a series of interceptors. The 
reflection of light from a pile of plates was discussed in a restricted 
form by Augustin Fresnel92 and Franz Neumann, the formulae of the 
latter being quoted by Wild in 1856. In 1862 Stokes93 treated the 
problem in a general way by means of the functional equations 

r{m + n) — r{m) + r(n)[t(m)]2/[l — r(w)r(w)], 

t(m + fi) — t(m)t(n)/[l — r(m)r(n)] 

in which r(m) denotes the fraction of energy reflected from a pile of 
m plates, t(m) denotes the fraction of energy transmitted and 
a(m) = 1 —r(m)—t(m) is the fraction of energy absorbed in the plates. 
In the derivation of these equations the plates are supposed to be all 
formed of the same material and to be all of the same thickness. The 
plates themselves and the interposed sheets of air are supposed to be 
so thick that the phenomenon of the colours of thin plates does not 
occur to any appreciable extent. The analysis deals only with intensi­
ties of light or other wave motion. 

I f f ( l ) = r , / ( 1 ) = / and quantities a, b are defined by the equations 

r ch a + t ch h = 1, r sh a — / sh b = 0, 

92 A. Fresnel, Calculs sur les intensités de lumière réfléchi par une, deux et quatre 
glacés, Oeuvres complètes, vol. 2, pp. 789-792. 

93 Sir George Stokes, On the intensity of the light reflected from or transmitted through 
a pile of plates, Proc. Roy. Soc. London vol. 11 (1862) pp. 545-556. J. Stirling, Note 
on a functional equation treated by Sir George Stokes, Proc. Roy. Soc. London Ser. A 
vol. 90 (1914) pp. 237-239. 
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an appropriate solution is 

sh (nb) sh (a) 
r(n) = ? t(n) = • 

sh (a + nb) sh (a + nb) 
I t should be noticed that 

4 sh2 (a/2) - (r~1/2 - r1/2)2 - t2/r, 4 sh2 (6/2) = (t~1/2 - t2)2 - r2//. 

Since 1—r>/ and 1— / > r the quantities a and b defined by these 
equations are both real. I t should be noticed also that 

t2 = 1 - 2r ch a + r2, r2 = 1 - It ch b + /2, 

[<(»)]2 = 1 - 2r(n) ch a + [r(»)]2
f 

[r(»)]2 = 1 - 2t(n) ch (nb) + [t(n)]2. 

Hence in order to investigate the effect of frequency on r(n) and t(n) 
it is useful to have plots in the r£-plane of the two systems of hyper­
bolas a = constant, b = constant. 

4.5. Mechanical filters. A general theory of mechanical filters was 
given by Horace Lamb94 and Charles Godfrey95 in 1898. In the analy­
sis of Lamb dynamical systems of any degree of complexity but all 
exactly alike are supposed to be interpolated at regular intervals 
along a line which is regarded for simplicity as an infinite string ca­
pable of longitudinal vibrations. The position and configuration of any 
one of these systems is imagined to be determined by the coordinate £ 
of the point of the string where it is attached and by means of n other 
coordinates q8 (5 = 1, 2, • • • , n). The kinetic energy T and potential 
energy V are, moreover, assumed to have the forms 

IT = E arqr + 2 £ a^r + Pk\ 2V = £ brql + 2 £ j8fcr + Q.(, 

so that the equations of motion are 

Mr + brqr + ar'i + &£ = 0, r = 1, 2, • • • , n, 

Pi + Qt + È (<Mr + jSrffr) = X 

where X is the external force corresponding to the coordinate x repre-
94 H. Lamb, On waves in a medium having a periodic discontinuity of structure^ 

Memoirs of the Manchester Literary and Philosophical Society vol. 42, no. 3, 1898, 
20 pp. 

95 C. Godfrey, Discontinuities of wave-motion along a periodically loaded string, 
Philosophical Magazine (5) vol. 45 (1898) pp. 356-363. 
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senting in Lamb's model the difference of tensions on the two sides 
of the gap into which the dynamical system is introduced. 

When all quantities contain the time factor exp (ikct) the first n 
equations of motion give the relations 

k2c2ar — j8r 
Qr= " kVa - b ' r=l,2,---,n, 

and the last equation gives 

ikVP - G - È (^2<*r ~ pr)
2/(k2c2ar - ftr)|f = - X. 

The successive dynamical systems may be distinguished by suffixes 
(Dr) and may be pictured as particles at intervals of length a. If lir/k 
is the wave length for a disturbance with the same time factor on the 
unloaded string, the motion to the right of DT is of type 

£ = £r COS (kx) + [%r+l — £r COS (ka)] SHI (kx) CSC (ka) 

while on the left it is 

£ = £r cos (kx) + [£r cos (ka) — £r_i] sin (kx) esc (ka). 

The tensions of the string on the two sides of Dr are 

E(d%/dx)+ = kQ esc (ka) [%r+i — £r cos (ka)], 

E(d%/dx)- = kE esc (ka)[%r cos (ka) — £ r-i], 

so 

X r = kE esc (&a) [£r+i — 2£r cos (&a) + £r_i] 

and there is a difference equation 

£r+i - 2 [cos (ka) - ƒ(*) sin (*a)]fr + £r_i = 0 

where 

(k2c2ar - &) 2 

r =l &2C2ar — br 

2kE-f(k) = * V P - Q - 2 

The solution of the difference equation has different forms according 
as the coefficient of 2£r does or does not lie between the limits ± 1 . 
The critical values of k are determined by 

C(ka) ss cos (ka) — f(k) sin (ka) = ± 1. 

The roots of this equation give the ranges of frequency within which 
there is total reflection or partial transmission. 
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When C(ka) lies between ± 1 there is a real angle 0 such that 

cos 6 = C(ak) 

and then the solution of the difference equation is 

£r » Peir$ + Qe~ird 

where P and Q are suitable constants independent of r. The wave­
length X in the loaded medium may be defined to be 

X = (2ira/0) = (ka/e)\0 

where Xo=(27r/fe) is the wave length in the unloaded medium. The 
wave velocity in the loaded medium may also be regarded as given by 
the equation 

v = (\kc/2w). 

The group velocity is then 

w = v - Uv/dK = - (\*c/2wa)[d(ka)/d0](d$/dk) = - [c/C'(ak)] sin0. 

Unless C'(ak)~0 for the critical values of k the group velocity will 
be zero when k has a critical value and sin 0 = 0. When 0 lies between 
0 and 7T the group velocity is positive when C'(ak) is negative. The 
behavior of v may be found by Lamb's graphical method in which use 
is made of the curves 

y = cot (a/2), y = — tan (x/2), y = fix/a), 

and the points of intersection of the last curve with the first two. With 
many forms of the function ƒ the intervals of partial transmission are 
represented by intervals beginning respectively at 7r, 2X, 37r, • • • , and 
the intervals of total reflection by intervals ending at these points. 
There may also be an interval of partial transmission between 0 and w. 

In Lamb's first example f{k)=ixka/2, where ix — M/pa. The dy­
namical system then consists of a mass M and pa is the mass of the 
portion of the string between two consecutive masses. When the 
string is infinite in both directions there is transmission only for cer­
tain values of k below a certain limit. When ka is large 0 is given 
approximately by Ô2 = fe2a2(l+ju) and the refractive index N is 

N - (X/Xo) = (1 + M)1/2. 

The effect of the loads is to increase the average density of the me­
dium. 

In Lamb's second example the mass M is urged towards its mean 
position by a spring and so 
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M / <r2a2\ 

The chief difference between this case and the last is that there is an 
interval of total reflection beginning at ka = 0 which is separated by 
an interval of partial transmission from the interval of total reflection 
which ends at ka =7r. Lamb regards this as remarkable. 

In Lamb's third example ƒ (k) = (nka/2)(l—k2c2/cr2). The chief dif­
ference between this case and the first is that as the frequency increases 
the intervals of partial transmission become wider and wider instead 
of shorter and shorter so that the medium is transparent for short 
waves of high frequency. This example was offered by Lamb to illus­
trate the transparency of a medium to Röntgen rays, a phenomenon 
which Stokes96 had endeavoured to explain in his Wilde lecture of 
1897. 

In Lamb's model there are a number of equal light rigid circular 
frames each of which is attached to the string at opposite ends of a 
diameter and has in its interior a particle M connected with the frame 
by means of similar springs so that the particle is at the center of the 
frame when the springs are equally extended. If £, denotes the dis­
placement of the point of the string to which one of the frames is 
attached and if rj8 denotes the displacement of the associated particle, 
the equation of motion of this particle is 

Un. + Ma2(Vt - &) = 0 

while there is a balance of tensions if 

0 = JfcE[&+i — & cos (ka)] — *£[(•« cos (ka) — &_i] 

+ Ma2(rj9 - &) esc (ka). 

These equations give the relation between £,+i, £« and £«_i of the type 
mentioned. 

Lamb's model furnishes a particular type of high pass filter. 

4.6. Selective reflection. In Lamb's work the string is unloaded 
to the left of 0 and on the right has masses M at the points 
# = 0, a, • • • , na and is unloaded beyond the point na. For x<0 it 
is assumed that 

98 Sir George Stokes, On the nature of the Röntgen rays, Memoirs of the Manchester 
Literary and Philosophical Society vol. 41, no. 15, 1897; Mathematical and physical 
papers, vol. 5, pp. 256-277. 
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For 0 <x <na it is assumed that 

t = ÇeUkct-rd) _|_ £)ei(kct+rd) 

and for x>na 

The kinematical conditions at x = 0 and x — na are 

1 + ,4 = C + A J5e-*»*« = Ce-*nö + ZVnö 

while the dynamical equations are 

1 — A = Ci esc (ka) [cos (£a) — e*0] + iD esc (&a) [cos (ka) — e~ie], 

Be~inka = iCerin esc (&a)[<riö — cos (ka)] 

+ iZVnö esc (&a) [eid — cos (&a)] 

and from these equations it is found that 

sin 0 sin (ka) exp [(n + l)i£a] 

sin 0 sin (&a) cos (n + 1)0 + f [l — cos 0 cos (ka)] sin (» + 1)0 

i(cos 0 — cos (ka)) sin (^ + l)deiJca 

B = 

4̂ — 
sin 0 sin (&a) cos (n + 1)6 + i[l — cos 0 cos (ka)] sin (^ + 1)0 

The intensities of the reflected and transmitted waves are respectively 

R = [(cos 6 - cos (ka))2 sin2 (n + 1)6]/H, 

T = [sin2 6 sin2 (ka)]/H, 

where J / = sin2 6 sin2 (fea) cos2 (n + l)0 + (l-cos9 cos (fea))2sin2 0 + 1)0. 
When w is large slight changes in ka and 0 will make cos (n + l)0 and 
sin (n + l)6 vary considerably. Mean values of R and T for values of X 
close to 27r/fe may be found by integration as in Kirchhoff's Optik 
(p. 165) and in Lamb's paper by using the well known formula 

ƒ. 
ir/2 d<t> 

a2 cos2 <j> + j32 sin2 0 

Consequently 

r = 

T = 

sin 0 sin (ka) 

cos 0 cos (&a) 

1 + 52 

= ir/2a|8. 

1 = 1 - T, 

_ 2q2 

R = — - — 
1 + q2 

where 
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Q = 
sin (ka/2 - 0/2) 

sin (ka/2 + 6/2) 

This quantity q is the coefficient of reflection obtained by Lamb in 
his analysis of the case in which waves travelling towards 0 along the 
unweighted portion of the string are reflected from the weighted por­
tion on which weights evenly spaced extend to infinity. This case is 
similar to the problem considered by Godfrey. 

An interesting variation of the present problem is one in which the 
unweighted portions of the string are replaced by weighted portions 
in which the weights are evenly spaced but at intervals differing in 
length from the intervals in the intermediate portion of the string. 
If the intervals in this intermediate portion are greater than in the 
rest of the string the problem is analogous to that of waves passing 
from a dense medium into a plate composed of a light substance. This 
problem is of interest for both longitudinal and transverse vibrations. 

4.7. The reactance theorem and its generalizations. In 1886 the 
late Lord Rayleigh97 gave a dynamical theorem which in modern 
terminology is a theorem relating to the driving point impedance in 
a chain like dynamical system. Applications to electrical networks 
were considered. In 1908 the theorem was extended by the present 
author98 to a linear integral equation 

u(s) = U(s) - X f k(s, t)U(t)dt 
Jo 

in which k(s, t) is a real symmetric kernel. If 

v(\) = f u(s)U(s)ds 
J o 

w( 

the theorem then states that the zeros and poles of the function w(\) 
are all positive when the kernel is such that for any real nonvanishing 
function x(s) the double integral 

ƒ'ƒ'» 
•/ o «̂  o 

(xkx) = I I x(s)k(s, t)x(t)dsdt 

97 Lord Rayleigh, The reaction upon the driving-point of a system executing forced 
harmonic oscillations of various periods, with applications to electricity, Philosophical 
Magazine (5) vol. 21 (1886) pp. 369-381; Scientific papers, vol. 2, pp. 475-485. 

98 H. Bateman, The reality of the roots of certain transcendental equations occurring 
in the theory of integral equations, Trans. Cambridge Philos. Soc. vol. 20 (1908) pp. 3 7 1 -
382; Notes on integral equations I I I , the homogeneous integral equation of the first kind, 
Messenger of Mathematics vol. 39 (1909) pp. 6-19. 
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is positive. The derivative w'Çk) is then positive for all real values of X, 
becoming infinite, if at all, only at certain values of X at which the 
homogeneous integral equation (with u = 0) can have a nonvanishing 
solution. 

I t is the analogue of this theorem for a system of linear algebraic 
equations 

n 

Ur = Ur ~ X ] £ kr.sUa, Y = 1, 2, • • • , tl, 
««1 

which is essentially the theorem given by Rayleigh. The real con­
stants kr,a are then supposed to be symmetric (kr.a^k&.r) and such 
that the quadratic form 

n 

r ,««l 

is positive for all nonvanishing sets of real quantities %r. The function 
wÇK) is then defined by the equation 

n 

W(X) = ]T) MrUr 
r = l 

and its derivative is positive for all real values of X. This indicates 
that the zeros and poles of the rational function wÇK) occur alternately. 

In 1922 G. A. Campbell" gave an expression for the driving-point 
impedance Z of a non-dissipative reactance network 

w, -/*'•• • < C - /"> 
in which M is a positive constant, ƒ2, ƒ4, • • • are constants represent­
ing resonant frequencies, / i , / 3 , • • • are constants representing anti-
resonant frequencies and the exponent m of the last factor in the 
numerator is 1 or 0 according as a resonant or anti-resonant frequency 
is the last member when the frequencies fr are arranged in order of 
increasing magnitude 

0 S f1 < ƒ2 < ƒ3 < ƒ4 • • • • 

This type of arrangement is possible because dX/df>0 and so the 
zeros and poles of X occur alternately. The theorem may be derived 
from the previous theorem for a system of algebraic equations by 

89 G. A. Campbell, Physical theory of the electric wave-filter, Bell System Technical 
Journal vol. 1 (1922) pp. 30-31. 
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taking all but one of the quantities ur to be zero. There is a corre­
sponding theorem for the more general set of linear equations 

n n 
Ur = 23 hr,sU8 — X S kr,aU8, T = 1, 2, • • • , », 

«=1 s= l 

where the coefficients fer,8, kr,s are real symmetric quantities such that 
the quadratic forms (xhx), (xkx) are positive for nonvanishing sets 
of quantities xr- There is also a similar theorem for the integral equa­
tion of the first kind 

u(s) = j h(s, t)U(t)dt - X f k(s, t)U(t)dt 
J o J o 

in which h(s, t), k(s, i) are real symmetric kernels such that (xhx) and 
(xkx) are positive for any nonvanishing real continuous function 
x(z'). In all these theorems the function w(K) increases continually 
with X but if the conditions imposed on the function k or the coeffi­
cients kr,8 are relaxed so that k is merely real and symmetric then the 
function Xw(X) increases with X and there are zeros and poles of this 
function which occur alternately but are not all positive. The theo­
rem that w(K) or \w(h) increases with X may be proved in many ways 
but one way is to use partial fractions. A number of theorems may be 
proved in this way, some of them are well known in the theory of 
algebraic equations and some have found useful applications in the 
theory of electric filters. 

The reactance theorem has been proved by many writers. Zobel100 

gives a proof by induction while Foster101 bases a proof on dynamical 
theorems of Routh, Rayleigh and Webster. Foster also calls atten­
tion to a connection with algebraic equations whose roots are all 
pseudonegative (that is, with negative real parts). In Routh's work, 
for instance, such an equation F(z) = 0 is expressed in the form 
F(z)=E(z)+0(z)=A(z2)+zB(z2) where E(z) is an even function of z 
and 0(z) is an odd function of z and it is found that the roots of the 
equations A(x)=0, B(#)=0 are all negative and occur alternately. 
The converse of this theorem has already been considered in section 2.2. 

Foster also considers the driving-point impedance of a general net­
work and connects it with a theorem associated with three positive 
definite quadratic forms which may be generalized as follows : 

100 O. J. Zobel, Theory and design of uniform and composite electric wave-filters, 
Bell System Technical Journal vol. 2 (1923) pp. 35-36. 

101 R. M. Foster, A reactance theorem, ibid. vol. 3 (1924) pp. 259-267; Theorems 
regarding the driving-point impedance of two-mesh circuits, ibid. vol. 3 (1924) pp. 651-
685. 
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Consider the system of linear algebraic equations 

n 
Ur = X) (gr.s + X/Zr>8 + \2kr,s)W8, Y = 1, 2, • • • , M, 

s=l 

in which the coefficients gr,s, ifcr,s, kr,s are real symmetrical quantities 
such tha tg r , s = gs,r, fer,s = ^s,r, fer,s = ks,r and that (#£#), (#/wc), (xkx) are 
positive for any real nonvanishing set of quantities x. Then the zeros 
and poles of the function w(\) = ^2^!UrWr are all pseudo-negative. 

When X is a complex quantity cr+ir and Wr= Ur-\-iVr, where <r> r, 
Ur and Vr are all real, the conjugate complex quantity to Wr, namely 
Wr* = Ur — iVr, arises when X is replaced by X*=cr — it and the zeros 
of wQs) will be pseudo-negative when the zeros of 

n 

se,*(X) = X) UrWr* = (W*gW) + \(W*hW) + \2(W*kW) 
r = l 

are all pseudo-negative. When, however, the right-hand side is re­
solved into its real and imaginary parts and each of these equated to 
zero it is seen at once that a must be negative and a similar argument 
is applicable when u = 0 and the possible values of X are, perhaps, 
poles of wQs). The theorem may be extended to the zeros and poles 
of the function w(K)+P where P is a positive constant and may also 
be extended to certain integral equations of type 

u(s) = f [g(s, t) + XA($, t) + X2£0, t)]W(t)dt 
J o 

where g(s, /) , h(5, /), k(s, t) are real symmetric functions such that 
(xgx), (xhx), (xkx) are positive for any nonvanishing function x(s) 
continuous in the range O^s^c. 

Proofs and extensions of the reactance theorem have been given by 
Cauer,102 Baerwald,103 Epheser and Glubrecht104 and many other writ-

102 W. Cauer, Die Verwirklichung von Wechselstrom Widerstanden vorgeschrieben 
Frequenzabhangigkeit, Dissertation, Technische Hochschule, Berlin, 1926, Arkiv for 
Elektrot. vol. 17 (1926) pp. 355-388; Ein Reaktanztheorem, Sitzungsbericht der 
Akademie der Wissenschaften, Berlin, 1931, pp. 673-681; Ein Satz über zwei zusani-
menhangen Hurwitzsche Polynôme, Sitzungbericht der Berlin Mathematische Gesell-
schaft vol. 27 (1928) pp. 25-31; Wechstromschaltingen, Akademie der Wissenschaften, 
Leipzig, 1941. 

103 H. G. Baerwald, Ein einfacher Beweis der Reaktanztheorems, Elektrische Nach-
richten Technik vol. 7 (1930) pp. 331-332. 

104 H. Epheser and H. Glubrecht, Die Grundlagen der Siebschaltungstheorien, ibid, 
vol. 17 (1940) pp. 169-192. See also K. Franz, Eine Verallgemeinerung des Fosterschen 
Reaktanztheorems auf beliebige Impidanzen, Elektrische Nachrichten Technik vol. 20 
(1943) pp. 113-115. 
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ers. There are also extensions to the case in which the quadratic 
forms (xgx), (xhx), (xkx) contain an infinite number of variables and 
to the case in which the range of integration 0 to c is infinite in the 
last mentioned theorem. Extensions to the case of Hermitian forms 
are also to be considered. 

4.8. The sorting of vibrations by means of filters. I t is often im­
portant to separate desirable vibrations from the undesirable ones 
particularly in electric and hydraulic transmission lines, but the prob­
lem of separation is important in acoustical and mechanical systems. 
In acoustics sound waves of a particular frequency or range of fre­
quencies may be needed for experimental work as in the determina­
tion of times of reverberation in an auditorium. The elimination of 
noise is an important requirement in some buildings and laboratories. 
The absorption of the vibrations produced by engines and heavy ma­
chinery provides many mechanical problems. 

The filtering properties of a system are generally examined by first 
finding the behavior of the system in a sinusoidal type of vibration, 
the so-called steady state, but it is important to know also the some­
what different response of the system to transient disturbances. This 
second problem is generally much harder than the first. Transient 
oscillations in electric wave filters were, however, studied by John 
Carson and Otto Zobel105 in 1923. The building up of sinusoidal cur­
rents in loaded electric lines had been investigated by Carson106 in 
1917 and by Clark107 and Kupfmüller108 in 1923. Carson's analysis is 

105 J. R. Carson and O. J. Zobel, Transient oscillations in electric wave filters, Bell 
System Technical Journal vol. 2 (1923) pp. 1-52. 

106 J. R. Carson, Theory and calculation of variable electrical systems, Physical Re­
view (2) vol. 17 (1921) pp. 116-134; General expansion theorem for the transient oscilla­
tions of a connected system, ibid. vol. 10 (1917) pp. 217-225; Theory of the transient 
oscillations of electrical networks and transmission systems, Transactions of the Ameri­
can Insti tute of Electrical Engineers vol. 38 (1919) pp. 345-427, discussion by M. I. 
Pupin and A. H. Cowles, pp. 462-464. See also T . C. Fry, The solution of circuit prob­
lems, Physical Review (2) vol. 14 (1919) pp. 115-136; J . R. Carson, The building up of 
sinusoidal currents in long periodically loaded lines, Bell System Technical Journal 
vol. 3 (1924) pp. 558-566; F . Pollaczek, Theory of the switching-on process of multi-
mesh artificial lines, Elektrishe Nachrichten Technik vol. 2 (1925) pp. 197-226. 

107 Alva B. Clark, Telephone transmission over very long cable circuits, Transactions 
of the American Institute of Electrical Engineers vol. 42 (1923) pp. 86-97, discussion 
by J. J. Pilliod. 

308 K. Kupfmüller, Free oscillation, echo effect, and influence of temperature in 
telephony over long Pupinised cables, Telegraphen- und Fernsprech-Technik vol. 12 
(1923) pp. 53-60; Über Beziehungen zwischen Frequenzcharakteristiken und Ausgleichs 
vorgangen in linearen Systemen, Elektrische Nachrichten Technik vol. 5 (1928) pp. 
18-32, 459. 
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based largely on the use of Fourier integrals. For the simpler problem 
of transients in mechanically loaded lines when use can be made of 
partial differential equations or of differential difference equations 
with constant coefficients there is a powerful method of influence 
functions which has been used effectively by Koppe, Havelock, 
Schrödinger, Pollaczek and the present writer.109 Effective use can 
also be made of the inverse Laplace transformation as suggested by 
the writer in 1910.110 In 1921 at the present writer's suggestion,111 

this method was adopted by Carson for work in electrical theory in 
which the so-called Duhamel integrals and operational methods of 
Heaviside were being used. 

4.9. Transverse vibrations of an infinite light string uniformly 
loaded at regular intervals. The advantages of the methods men­
tioned in the last section may be seen by considering the function 

*»W = f J**[2c(f- s)]f(s)ds 
J o 

in which the integrand of this Poisson-Duhamel integral involves the 
influence function for the infinite loaded line. When n is a positive 
or negative integer it is readily seen that xn(t) satisfies the homogene­
ous equation 
(A) *»"(/) = c2[xn+1(t) + tfn-iW - 2xn(t)] 

but when n = 0 it satisfies the nonhomogeneous equation 

xi'(t) « fit) + c\xx + x-i - 2x0) 
109 Some references to the literature are given in a paper by the author, Some 

simple differential difference equations and the related functions, Bull. Amer. Math. Soc. 
vol. 49 (1943) pp. 494-512. 

110 H. Bateman, The solution of a system of differential equations occurring in the 
theory of radio-active transformations, Proc. Cambridge Philos. Soc. vol. 15 (1910) 
pp. 423-427; The solution of linear differential equations by means of definite integrals, 
Trans. Cambridge Philos. Soc. vol. 21 (1909) pp. 171-196; Report on the history and 
present state of the theory of integral equations, Report of the British Association for the 
Advancement of Science, 1911, 80 pp. ; An integral equation occurring in a mathematical 
theory of retail trade, Messenger of Mathematics vol. 49 (1919-1920) pp. 134-137. 

111 See a letter written by the author to J. R. Carson after the appearance of the 
latter's paper in Physical Review (1921). The method of the inverse Laplace trans­
formation was recommended also by the author to M. D. Hersey in answer to a letter 
written during the last war regarding some equations occurring in the theory of 
recording instruments. The method has been taught by the writer for nearly forty 
years. Simeon Denis Poisson was probably the first man to use the method for the 
treatment of differential difference equations in his memoir Sur la distribution de la 
Chaleur dans les corps solides, J. École Polytech. (1) vol. 12 (1923) pp. 1-144, 249-403 
(especially pp. 29-34). 
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and so the motion of the particle numbered 0 is forced while the mo­
tion of the other particles is free. 

Following the lead of A. E. Heins112 who has used the method of the 
inverse Laplace transformation for the classical equation we form 
(A) the function 

ƒ» 00 

er'*Xn(t)dt 
0 

and a difference equation for Xn(z) can be readily found. In the par­
ticular case when f(t) =sin (2a/) the multiplication theorem for inte­
grals of Laplace's type gives the relation 

Xn(z) = 2a(z2 + 4 a 2 ) ~ V + 4c*)-l'*[r(*)]la»l 

where 

2cT{z) « (s' + éc* ) 1 ' * -* . 

From this expression for Xn(z) the behavior of xn(t) for large positive 
values of t may be derived by the method of Mellin and Haar ex­
plained in my paper in this Bulletin. Except for a damped initial 
motion the motion is eventually the steady state of periodic oscilla­
tion given by 

**(/) ~ (a2 - c2)~v2[e2iat{T(2ia)}2n ± e~2iat{T(- 21a)}1»]. 

When a>c the right-hand side is real when the + sign is used, when 
a <c the negative sign must be taken to make the right-hand side real. 
Another interesting example is that in which the pth particle differs 
in mass from all the others so that 

x" = c2(xn+i + xn~i — 2xn), n^py 

x" = a2(xp+i + Xp-i — 2xp), a y* c> p > 0. 

A solution for the case in which #o(0) = 1, xn(0) = 0, w^O, Xn (0) = 0 is 

Xn(t) = J2n(2ct) + (1 - C2/a2) f J2n-2p[2c(t - s)]x{ (s)ds 

and 

Xp(z) = x—^± 
(z2 + 4c2)1'2 - (1 - c2 a2)z 

1X2 A. E. Heins, On the solution of linear difference differential equations y Journal of 
Mathematics and Physics, Massachusetts Institute of Technology, vol. 19 (1940) pp. 
153-157. 
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The resulting estimate of xp(t) for large positive values of t is for 
c2>2a2 

a\c2 - a2) r 2aH 1 
xp(t)~— (1 - 2a2A2)~ | p l exp . 

PK c\c2 - 2a2) l (c2 - 2a2)1'2 J 
When c2>2a2 the motion ultimately decays according to an expo­
nential law. When c2<2a2 the function Xp(z) is infinite for two imagi­
nary values of z and xp(t) is ultimately periodic. When c2 = 2a2 the 
solution is simply 

xp(t) = (l/2ct)J\2p\+i(2ct). 
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