
SUBDIRECT UNIONS IN UNIVERSAL ALGEBRA 

GARRETT BIRKHOFF 

1. Preliminary definitions. By an algebra, we shall mean below any 
collection A of elements, combined by any set of single-valued opera­
tions fay 

(1) y = fa(*U ' ' ' , *n(«)). 

The number of distinct operations (that is, the range of the vari­
able a) may be infinite, but for our main result (Theorem 2), we shall 
require every n(a) to be finite—that is, it will concern algebras with 
finitary operations. 

The concepts of subalgebra, congruence relation on an algebra, homo-
morphism of one algebra A onto (or into) another algebra with the 
same operations, and of the direct union AiX • • • XAr of any finite 
or infinite class of algebras with the same operations have been de­
veloped elsewhere.1 More or less trivial arguments establish a many-
one correspondence between the congruence relations 0i on an algebra 
A and the homomorphic images Hi — 6i(A) of the algebra (isomorphic 
images being identified); moreover the congruence relations on A 
form a lattice (the structure lattice of A). In this lattice, the equality 
relation will be denoted 0 ; all other congruence relations will be called 
proper. 

More or less trivial arguments also show (cf. Lattice theory, Theorem 
3.20) that the isomorphic representations of any algebra A as a sub-
direct union, or subalgebra S^HiX • • • XHr of a direct union of 
algebras Hi, correspond essentially one-one to the sets of congruence 
relations 0i on A such that A0t=O. In fact, given such a set of Oi, the 
correspondence 

(2) 6: a-> [Ofa), • • , 6r(a)] «* [hh • • • , * , ] 

exhibits the desired isomorphism of A with a subalgebra of 
i ï iX • • • XHr, where Hi = 0i(A). Incidentally, the number of Si can 

Presented to the Society, April 29, 1944, under the title Subdirect products in 
universal algebra; received by the editors March 10, 1944, and, in revised form, June 
5, 1944. 

1 On the structure of abstract algebras, Proc. Cambridge Philos. Soc. vol. 31 (1935) 
pp. 433-454, and in the foreword to the author's Lattice theory. The idea of an ab­
stract congruence relation is also developed in chap. VI, §14, of S. MacLane's and 
the author's Survey of modern algebra. Interesting remarks in this connection may be 
found in J. C. C. McKinsey's and A. Tarski's The algebra of topology, Ann. of Math, 
vol. 45 (1944) esp. pp. 190-191. 
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be infinite. What is more important, the operations of A need not 
even be finitary.2 

Equally trivial arguments extend a well known theorem of Emmy 
Noether on commutative rings3 to abstract algebras in general. In 
order to state this extension, we first define an algebra A to be sub-
directly irreducible if in any finite or infinite representation (2), some 
6i is itself an isomorphism. This means that the meet 0* of all proper 
congruence relations on A is itself a proper congruence relation. In 
lattice-theoretic language, it means that the structure lattice L(A) 
of A contains a point 0*>O such that 0>O implies 0^0*. Hence if A 
is subdirectly irreducible, 0P\0' = 0 in L(A) implies 0 = 0 or 0' = 0 ; such 
an A we shall call weakly irreducible. If L(A) satisfies the descending 
chain condition, and A is weakly irreducible, then it is evidently also 
subdirectly irreducible in the strong sense. 

If L(A) satisfies the ascending chain condition, then it is evi­
dent by induction3 that there exists a representation of 0 as the meet 
O = 0iH • • • r\Br of a finite number of irreducible elements. This yields 
the following easy generalization of Emmy Noether's theorem on 
commutative rings. 

THEOREM I. Any algebra A whose structure lattice satisfies the as­
cending chain condition is isomorphic with a subdirect union of a finite 
number of weakly irreducible algebras. 

For this result, we still do not need to assume that A has finitary 
operations. 

2. Main theorem. Our principal result is the partial extension of 
Theorem 1 to algebras without chain condition. As will be seen in §3, 
this result will contain as special cases many known theorems and 
some new theorems. 

THEOREM 2. Any algebra A with finitary operations is isomorphic with 
a subdirect union of subdirectly irreducible algebras. 

PROOF. For any a^b of A, consider the set S (a, b) of all congru­
ence relations 0 on A, such that a^b (mod 0). If T is any linearly 
ordered subset of S(a, b), the union r of the 0G T is defined by the rule 
(3) x s y (mod r) means x as y {mod 0) for some 0 £ T. 

It is evident that a^b (mod r), and that if A has finitary operations, 
2 This is observed in N. H. McCoy and Deane Montgomery, A representation of 

generalized Boolean rings, Duke Math. J. vol. 3 (1937) p. 46, line 12. 
8 Cf. van der Waerden, Moderne Algebra, first éd., vol. 2, p. 36. The unicity theo­

rem on p. 40 does not apply to abstract algebras in general, however. 
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then T is a congruence relation. Hence, in the structure lattice L{A) 
of A, the union of any linearly ordered subset of 5(a, b) exists and is 
in S(a, b). But this is the hypothesis of the "first form" of Zorn's 
Lemma.4 The conclusion is that S (a, b) contains a maximal element, 
Oa,b- We next consider Hathf the homomorphic image of A, mod 0O> 

Every proper congruence relation 0>O corresponds5 to a 0'>0a,&; 
and since 0a,b is maximal in S(a, &), this implies a=b (mod 0'). Hence 
the meet 0* of the 0>O in Ha>h, defined by 

(4) x s y (mod 0*) means x = y (mod 0) for all 0 > 0, 

will satisfy a=b (mod 0*), and hence 0*>O. Hence (cf. §1) Ha,b is 
subdirectly irreducible. 

Finally, the meet of all 0a,b is 0, since we have identically xf^y 
(mod 0Xty). Hence, by the theorem cited in §1, paragraph 3, A is 
isomorphic with a subdirect union of the (subdirectly irreducible) 
Hatbi q.e.d. 

3. Applications* Theorem 2 has importance mainly because sub­
directly irreducible algebras may be specifically described in so many 
cases. 

LEMMA 1. A weakly irreducible distributive lattice or Boolean algebra 
must consist of 0 and I alone. 

PROOF FOR DISTRIBUTIVE LATTICES. For any a, the endomorphisms 
6a:x—>x\Ja and 0a' :x—>xr\a have the property6 that 6aC\Bi =0, and 
neither defines the equality relation unless a = 0 or a = 7. 

PROOF FOR BOOLEAN ALGEBRAS. Let x^y (mod 0«) mean \x—y\ £a 
(symmetric difference notation) ; then 0an0a> = 0, and neither defines 
the equality relation unless a = 0 o r a ' = 0 (a = 7). 

COROLLARY 1. Any distributive lattice is isomorphic with a ring of 
sets.7 

COROLLARY 2. Any Boolean algebra is isomorphic with afield of sets.1 

4 Cf. J. W. Tukey, Convergence and uniformity in topology, Princeton, 1940, p. 7. 
* We omit discussing the obvious isomorphism between L(Ha,b) and the sublattice 

of 6'>0a,b in L(A). 
•PROOF. If x\Ja«*y\Ja and xC\a«*yr\af then a;=«^P\(«Ua)»xO(yUa) 

« (*H:y)U(t fn<ï )» ( :ynt f )U(^ the distrib­
utive laws. 0a and 6a' are endomorphisms. 

7 Corollaries 1-2 are theorems of the author and Stone, respectively. Corollary 3 
below is due to McCoy and Montgomery, op. cit. footnote 2. Corollary 4 is due to 
G. Kothe, Absfrakte Theorie nichtkommutative Ringe, Math. Ann. vol. 103 (1930) 
p. 552; N. H. McCoy Subrings of infinite direct sums, Duke Math. J. vol. 4 (1938) 
pp. 486-494. 
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LEMMA 2. A sübdirectly irreducible commutative ring R without nil-
potent elements is a field.8 

PROOF. As in §1, R will have a unique minimal ideal (that is, con­
gruence relation) J". But for any a^Oin Jt since aa^O, aJ>0. More­
over since {aJ)R=a(JR)SaJ, a J is an ideal, 0<aJ^J. Conse­
quently aJ=J—whence / is a field (Huntington's postulates) with 
unit e. The set 0:e of all #£ i? such that ex = 0 is an ideal, and 
(0:e)P\J=0 by what we have just shown; hence 0:e = 0. But for any 
x(~R, e(x—ex)=0; hence (#•— e#)£0:e = 0, and x — (x—ex)+ext 

Q = ex£:J. We conclude that R = J is a field, q.e.d. 
One might infer that by Theorem 2 any commutative ring with­

out nilpotent elements was a subdirect product of fields, but this 
reasoning would be invalid. It is not necessarily true that a homo-
morphic image of rings without nilpotent elements is itself without 
nilpotent elements. 

On the other hand, any homomorphic image of a p-ring (or com­
mutative ring in which ap = a for some prime p) is itself a p-ring, and 
evidently without nilpotent elements, since apn=a for all n. Further­
more, a field in which ap—a can contain only p elements, and must be 
GF(p) (or the "field" 0). 

COROLLARY 3. Any p-ring is a subdirect union of GF(p), or consists 
of 0 alone.7 

Again, any homomorphic image of a regular ring in the sense of 
von Neumann (or ring in which any a has a "relative inverse" u such 
that aua = a) is itself regular, and evidently without nilpotent ele­
ments if commutative (since anun~1 = auau • • • ua = a?£0). 

COROLLARY 4. Any commutative "regular" ring is a subdirect union 
of fields.7 

If one were interested in obtaining corollaries of Theorem 1, one 
might show that even a weakly irreducible ^-ring or regular ring was 
a field. Again, one might show (van der Waerden, op. cit. p. 32) 
that, in a weakly irreducible commutative ring satisfying the chain con­
dition, every divisor of zero is nilpotent; this would yield E. Noether's 
theorem that every commutative ring satisfying the chain condition 
was a subdirect union of a finite number of primary rings. 

Similarly, one can show easily that the only weakly irreducible 
vector space over a field Fis the one-dimensional vector space V(F; 1) 
(or 0). It follows that any vector space is a subdirect union of one-

This lemma was suggested to the author in conversation by N. H. McCoy. 
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dimensional vector spaces. Actually (due to the existence of bases) 
a stronger result is well known. 

LEMMA 3. The only weakly irreducible commutative groups G are the 
ugeneralized cyclic" groups: the additive subgroups of the rationals, and 
those of the rationals mod one. 

We omit the proof, which follows easily from the fact that a com­
mutative group with two generators is cyclic unless it contains two 
disjoint subgroups (the latter hypothesis would make G weakly re­
ducible). 

COROLLARY 5. Any commutative group is a subdirect union of gen­
eralized cyclic groups. 

The center of any weakly irreducible hypercentral (alias nilpotent) 
group H is generalized cyclic (the proof is trivial, granted Lemma 3) ; 
the converse also holds if H is finite.9 Hence we have the following 
corollary. 

COROLLARY 6. Any hypercentral group is a subdirect union of groups 
with generalized cyclic centers. 

Further, any weakly irreducible commutative /-group (lattice-
ordered group) is known10 to be simply ordered. This yields the fol­
lowing corollary. 

COROLLARY 7. Any commutative l-group is a subdirect union of sim­
ply ordered 1- groups. 

One can easily show (although we omit the proof) that any closed 
element in a closure algebra (in the sense of McKinsey and Tarski11) 
determines a congruence relation, essentially through relativization 
with respect to the complementary open set. Then from the definition 
of well-connectedness one obtains the following corollary. 

COROLLARY 8. Any "closure algebra" is a subdirect union of "well-
connected" closure algebras. 

HARVARD UNIVERSITY 

9 Theorems of Burnside (cf. H. Zassenhaus, Gruppentheorie, Teubner, 1937, p. 
107, Satz. 11) and P. Hall, A contribution to the theory of groups of prime-power orders, 
Proc. London Math. Soc. vol. 36 (1933) p. 51, Theorem 2.49. 

10 Cf. the author's Lattice-ordered groups, Ann. of Math. vol. 43 (1942) p. 3JL9. 
u The algebra of topology, Ann. of Math. vol. 45 (1944) pp. 141-191. The definition 

of well-connectedness is on p. 147; the concept of relativization is developed on p. 151. 


