
NEUTRAL ELEMENTS IN GENERAL LATTICES1 

GARRETT BIRKHOFF 

1. Introduction. O. Ore has defined "neutral" elements in modular 
lattices as elements a satisfying an (x u y) = (a n x) u (an y) for all 
x, y and dually.2 In the case of complemented modular lattices, the 
neutral elements compose the "center" in J. von Neumann's theories 
of continuous geometries and regular rings—that is, the set of ele­
ments having unique complements.3 

The purpose of the present note is to extend the notion of neutral 
elements to general lattices. More precisely, call an element a of a 
lattice "neutral" if and only if every triple {a, x, y} generates a dis­
tributive sublattice. It is proved that the neutral elements of any 
lattice L form a distributive sublattice, consisting of the elements 
carried into [/, O] under isomorphisms of L with sublattices of di­
rect products. Actually, this sublattice is the intersection of the maxi­
mal distributive sublattices of L. 

Further, complements of neutral elements, when they exist, are 
unique and neutral. The sublattice of complemented neutral elements 
may be called the "center" of a lattice: it consists of those elements 
carried into [7, 0] under isomorphisms of L with direct products. 

2. Fundamental definition. We define an element a of a lattice L 
to be "neutral" if and only if every triple {a, x, y} generates a dis­
tributive sublattice of L. 

LEMMA 1. If a is "neutral" then the dual correspondences x-^x n a 
and x-^x u a are endomorphisms4 of L. 

PROOF. By definition, (x u 3/) n a = (x u a) n (y u a) and (x n y) n a 
= (x n a) n (y n a), and dually. We note that this condition, which is 
sufficient to guarantee neutrality in the case of modular lattices, does 
not guarantee neutrality in general—see the graph below. 

1 Presented to the Society, September 8, 1939. 
2 O. Ore, On the foundations of abstract algebra I, Annals of Mathematics, (2), vol. 

36 (1935), pp. 406-437. For the definitions of lattices and modular lattices (called by 
Ore structures and Dedekind structures), as well as of sublattice, distributive lattice, 
O, I, and so on, compare the author's Lattices and their applications, this Bulletin, 
vol. 44 (1938), pp. 793-800—or the author's Lattice Theory, American Mathematical 
Society Colloquium Publications, vol. 25, 1940. 

3 J. von Neumann, Lectures on Continuous Geometries, Princeton, 1935-1936. Cf. 
also R. P. Dilworth, Note on complemented modular lattices, this Bulletin, vol. 45 
(1939), pp. 74-76. 

4 We define an endomorphism as a homomorphism of L with itself. 

702 



GENERAL LATTICES 703 

LEMMA 2. If a is neutral, then x n a =y n a and x u a =y u a imply 
x=y. 

PROOF. By direct computation, using the distributive law twice, 

x = x n (x u a) = x n (y u a) = (x n 3/) u (x n a) 

= (x n y) u (y n a) = j n (x u Û) = y n (y u a) — y. 

Using x in the graph, we see that this condition by itself is also not 
sufficient. However, Lemmas 1-2 together are sufficient to guarantee 
neutrality. 

F I G . 1 

Indeed, consider the correspondence x—+ [x n a, x u a] from L to 
the product5 ST of the sublattice 5 of elements s^a> with the sub-
lattice T of elements t^a. By Lemma 1, it is homomorphic onto a 
sublattice of ST; by Lemma 2, it is one-one; hence it is isomorphic. 
Moreover x—» [a, a] = [/, 0 ] , since a is the I oî S and the O of T. 

But conversely, [/, 0] is obviously "neutral" in ST, since each 
component is. Hence it is neutral in every sublattice of ST, including 
L, and we conclude6 that the following holds: 

THEOREM 1. An element of a lattice is neutral if and only if it is 
carried into [I, 0 ] under an isomorphism of the lattice with a sublattice 
of a direct product. 

3. Neutral elements a sublattice. Just as in the case of modular 
lattices, we have the following theorem: 

THEOREM 2. The neutral elements of any lattice f or m a distributive 
sublattice. 

PROOF. Let a and b be neutral. Then since the product of two 
6 By the "product" ST, is meant the system of couples [s, t\, s t S, t e T, where 

[s, t] n [s't V] == [s n s', t n V] and dually. 
6 N.B., we do not assume tha t L itself has an O or an I. 
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endomorphisms of L is an endomorphism, it follows that the cor­
respondence 

x —> [x n a n b, (x u a) n b, (x n a) u 6, # u a u £>] 

defines a homomorphism of L onto a sublattice of a product STUV 
of four sublattices of itself. Moreover by Lemma 2 , ( x n a ) and (x u a) 
and therefore x, are determined uniquely by their images under the 
homomorphism. Hence the homomorphism is an isomorphism. But 
au b goes into [/, I, I, 0] under this—and hence into [/, 0} of 
(STU) V. Thus a u b is neutral; dually, a n b is neutral, which was 
to be proved. 

4. Intersection of maximal distributive sublattices. The set of neu­
tral elements of a lattice is also characterized in another way by the 
next theorem : 

THEOREM 3. The set of neutral elements of a lattice L is the intersec­
tion of its maximal distributive sublattices. 

PROOF. First, if a is not neutral, then some triple {a, x, y\ is not 
distributive. Hence no maximal distributive sublattice obtained by 
enlarging the distributive sublattice generated by {x, y\ can con­
tain a. Consequently, the intersection of the maximal distributive 
sublattices of L contains no non-neutral elements. 

Conversely, if a is neutral, and S is a distributive sublattice of L, 
consider the sublattice generated by {a, S}. The endomorphisms 
x—>x n a and x—>x u a carry it into sublattices generated by a dis­
tributive sublattice and / or 0. But such sublattices are always dis­
tributive—hence so is the sublattice generated by {a, S], since it is 
a sublattice of a product of distributive lattices. Thus every maximal 
distributive sublattice contains a, and the intersection of the maxi­
mal distributive sublattices contains every neutral element (as well 
as no non-neutral elements). 

5. Center of a lattice. When one comes to complements of neutral 
elements, one finds that the following statement holds: 

THEOREM 4. Complements of neutral elements, when they exist, are 
unique and neutral. 

PROOF. Using Theorem 1, we see that [J, 0] n [x, y] is [0, 0] if 
and only if x = 0> while [/, 0] u [x, y] is [/, ƒ] if and only if y—I. 
Hence [ƒ, 0] has no complement except [0,1] in the sublattice of ST 
isomorphic with L, proving uniqueness. Moreover [0, / ] is itself neu­
tral, completing the proof. 
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COROLLARY 1. The neutral elements of a complemented lattice form a 
Boolean algebra. 

We define the "center" of a lattice as the set of its complemented 
neutral elements. 

THEOREM 5. The center of any lattice L is a complemented distribu­
tive sublattice—and hence a Boolean algebra. 

PROOF. If a and b are neutral elements of i , with (neutral) com­
plements a' and b'', then 

(a n b) n (a
f u b') = (a n b n a') u (a n b n J') = O u O = O, 

( ö n j ) u {a' u V) = (au a' u V) n (bu a' u b') = / n ƒ = ƒ, 

and so a n è is complemented. Dually, a u & is complemented, com­
pleting the proof. 

We can now specialize Theorem 1 by proving the following: 

THEOREM 6. An element is in the center of a lattice L if and only if 
it is carried into [/, O ] under an isomorphism of L with a direct product. 

PROOF. By Theorem 1, such an element is neutral, and it has the 
complement [0,1]. Conversely, suppose a and a' are complementary 
neutral elements of L. Then for all x, 

x = x n I = x d (au a') = (x n a) u (x n a'). 

Hence the correspondence #—>[x n a, x n a'\ is one-one between L 
and the couples [u, v] with uSa, v^a''; the inverse correspondence 
is [u, v]-^u u v. But it obviously preserves inclusion; hence it is an 
isomorphism. Finally, it carries L into the product ST of the lattice S 
of elements s^a) with the lattice Tof e lements /^a r , while it carries a 
into [ana, a n a'\ — [/, 0] in ST. 

HARVARD UNIVERSITY 


