ON THE SUPPORTING-PLANE PROPERTY OF A CONVEX BODY¹

DAVID MOSKOVITZ AND L. L. DINES

In an earlier paper, 2 the authors have shown that in a linear space \mathfrak{S} with an inner product, a set \mathfrak{M} which is closed and linearly connected is supported at a set of boundary points which is everywhere dense on the boundary of \mathfrak{M} , and an example is given to show that such a set \mathfrak{M} may have boundary points through which no supporting plane exists. The purpose of this paper is to show that if a set, in addition to being linearly connected and closed, also possesses inner points, then it is completely supported at its boundary points. In (I), reference was made to a paper by Ascoli in which such a result was obtained in a separable space. We do not assume our space $\mathfrak S$ to be separable. The definitions and results of (I) will be used in this paper.

A set \Re , which is a proper subset of the space \mathfrak{S} , will be called a *convex body* if it is linearly connected, closed, and possesses inner points. In the sequel \Re will always denote a convex body.

With reference to the set \Re , there is associated with each point x of the space \mathfrak{S} a nonnegative number r(x): if x is an inner point of \Re , r(x) is defined as the least upper bound of the radii of spheres about x which do not contain points exterior to \Re ; for other points of \mathfrak{S} , r(x) is defined to be zero. We will call r(x) the radius at the point x.

If x_1 is a point of \Re , all points x of the sphere $||x-x_1|| \le r(x_1)$ are points of \Re .

THEOREM 1. Let r_1 and r_2 be the radii at the points x_1 and x_2 , respectively, of the convex body \Re . Then the radius r at the point

$$x = x_1 + k(x_2 - x_1),$$
 $0 \le k \le 1,$

satisfies

$$r \geq r_1 + k(r_2 - r_1).$$

PROOF. Let $y=x+\rho u$, where $\rho=r_1+k(r_2-r_1)$ and ||u||=1. The points $y_1=x_1+r_1u$ and $y_2=x_2+r_2u$ are points of \Re . But from the definitions of x, ρ , and y, it follows that $y=y_1+k(y_2-y_1)$. Hence y, being on the segment joining y_1 and y_2 , is also a point of \Re . Consequently

¹ Presented to the Society, September 5, 1939.

² On convexity in a linear space with an inner product, Duke Mathematical Journal, vol. 5 (1939), pp. 520-534. Hereafter, this paper will be referred to by (I).

all points on the boundary of the sphere with radius ρ and center x are in \Re . Since \Re is linearly connected, also all points within this sphere are in \Re . Therefore $r \ge \rho$ and the theorem is established.

The following corollaries, which appear self-evident in ordinary space, can be shown to be direct consequences of the preceding theorem.

COROLLARY 1. Each point of the segment joining two inner points of \Re is an inner point of \Re .

COROLLARY 2. If x_0 is a boundary point and x_1 an inner point of \Re , then the points $x = x_1 + k(x_0 - x_1)$ are inner points of \Re for $0 \le k < 1$, and exterior points for k > 1.

With reference to a given boundary point x_0 of the set \Re , there is associated with each point x, other than x_0 , of the space \mathfrak{S} a nonnegative number s(x), defined by 3

$$s(x) = r(x)/||x - x_0||.$$

If x is an exterior point or a boundary point of \Re , other than x_0 , s(x) is equal to zero; if x is an inner point of \Re , s(x) is positive; $s(x_0)$ is not defined.

It is also obvious that $s(x) \le 1$, since $r(x) \le ||x - x_0||$.

THEOREM 2. Let x_0 be a given boundary point of the convex body \Re , and let x_t be given by

(1)
$$x_t = x_0 + tu$$
, where $t > 0$, $||u|| = 1$.

Then, for fixed u,

- (a) $s(x_t)$ is a non-decreasing function as $t\rightarrow 0$; and
- (b) $\lim_{t\to 0} s(x_t)$ exists.

PROOF. In case there are no points of \Re given by (1), the theorem is obviously true, for then

$$s(x_t) = 0$$
 for $t > 0$, $\lim_{t \to 0} s(x_t) = 0$.

In case there are points of \Re given by (1), let x_1 and x_2 be two points of \Re on (1) for parameter values t_1 and t_2 , where $t_1 < t_2$; then we have

(2)
$$x_1 = x_0 + t_1 u, \qquad x_2 = x_0 + t_2 u; \\ s(x_1) = r(x_1)/t_1, \qquad s(x_2) = r(x_2)/t_2.$$

³ Since s is a function of x_0 as well as x, a more explicit notation would be $s(x_0, x)$; but the simpler notation will suffice, inasmuch as the function is to be used in the sequel only with reference to a fixed boundary point x_0 .

But $x_1 = x_0 + (t_1/t_2)(x_2 - x_0)$, and hence, by Theorem 1, we have

$$r(x_1) \geq \frac{t_1}{t_2} r(x_2),$$

since $r(x_0) = 0$. Therefore, by (2), $s(x_1) \ge s(x_2)$.

This result establishes part (a) of the theorem. Since $s(x_t)$ cannot exceed one, obviously part (b) of the theorem is true.

Let Σ be the unit sphere about x_0 ; and let p_u be the point on Σ given by $p_u = x_0 + u$, ||u|| = 1. Let $x_t = x_0 + tu$, (0 < t < 1), be the segment joining x_0 to p_u ; and let⁴

$$\sigma(u) = \lim_{t \to 0} s(x_t).$$

We thus have a function $\sigma(u)$ uniquely defined at each point p_u on the sphere Σ . Obviously, by its definition, we have

$$0 \le \sigma(u) \le 1$$
.

Also $\sigma(u) = 0$ only if the segment joining x_0 to p_u does not contain any inner points of \Re . If the segment joining x_0 to p_u contains inner points of \Re , we have $\sigma(u) > 0$.

LEMMA 1. Let p_u and p_v be two points on Σ , such that

$$p_u = x_0 + u, \quad p_v = x_0 + v, \quad v = -u.$$

Then at least one of the numbers $\sigma(u)$ or $\sigma(v)$ is equal to zero.

PROOF. Assume $\sigma(u) > 0$; then the segment joining x_0 to p_u contains inner points. Consequently, by Corollary 2, the segment joining x_0 to p_v does not contain any inner points. Therefore, $\sigma(v) = 0$.

THEOREM 3. Let x_0 be a given boundary point of the convex body \Re , and let Σ be the unit sphere about x_0 . Let p_u and p_v given by

$$p_u = x_0 + u, \qquad ||u|| = 1, \qquad p_v = x_0 + v, \qquad ||v|| = 1$$

be two distinct points on Σ , for which $\sigma(u)$ and $\sigma(v)$ are both positive. Then there exists a point p_w distinct from p_u and p_v for which

$$\sigma(w) > \frac{1}{2} [\sigma(u) + \sigma(v)].$$

$$\sigma(u) = \lim_{x \to x_0, \text{ along } x_t = x_0 + tu} s(x) = \lim_{x \to x_0} \frac{r(x) - r(x_0)}{\|x - x_0\|} = r'_u(x_0)$$

is the directional derivative of r(x) at x_0 in the direction u.

⁴ The limit was shown to exist in Theorem 2; we are denoting the value of this limit by $\sigma(u)$. It may be of interest to note that

PROOF. Let x_t and y_t be points of \Re given by

$$x_t = x_0 + tu$$
, $y_t = x_0 + tv$, $0 < t < 1$,

and let $((u, v)) = \lambda$. Then, certainly $|\lambda| \le 1$. But if $\lambda = 1$, u = v, and p_u and p_v are not distinct. If $\lambda = -1$, u = -v, in which case not both of the numbers $\sigma(u)$ and $\sigma(v)$ can be positive, because of Lemma 1. Consequently, we have

$$-1 < \lambda < 1$$
.

Let $z_t = \frac{1}{2}(x_t + y_t)$; then $z_t = x_0 + \xi t w$, where ||w|| = 1 and $\xi = \frac{1}{2}(1 + \lambda)^{1/2}$. Thus

$$0 < \xi < 1$$
.

We thus have a point p_w on the sphere Σ defined by $p_w = x_0 + w$. Now, $r(z_t) \ge \frac{1}{2} [r(x_t) + r(y_t)]$, by Theorem 1. Hence

$$s(z_t) = \frac{r(z_t)}{\xi t} \ge \frac{1}{2\xi} \left[\frac{r(x_t)}{t} + \frac{r(y_t)}{t} \right] = \frac{1}{2\xi} \left[s(x_t) + s(y_t) \right],$$

and

$$\lim_{t\to 0} s(z_t) \geq \frac{1}{2\xi} \lim_{t\to 0} \left[s(x_t) + s(y_t) \right],$$

from which

$$\sigma(w) \ge \frac{1}{2\xi} \left[\sigma(u) + \sigma(v) \right] > \frac{1}{2} \left[\sigma(u) + \sigma(v) \right].$$

Thus the theorem is established.

Let $\bar{\sigma}$ denote the least upper bound of the function $\sigma(u)$ as p_u varies over the sphere Σ . Then, also $0 \le \bar{\sigma} \le 1$; and $\bar{\sigma} = 0$ is possible only for sets which do not have any inner points. For a convex body \Re , we have $0 < \bar{\sigma} \le 1$.

In the material which follows, it is to be understood that x_0 is a fixed boundary point of the convex body \Re , s(x) is defined relative to x_0 , Σ is the unit sphere about x_0 , $\sigma(u)$ is the function defined above on the boundary of Σ , and $\bar{\sigma}$ the least upper bound of $\sigma(u)$ on Σ .

THEOREM 4. If there is a point p_u on Σ for which $\sigma(u) = \bar{\sigma}$, this point is unique.

PROOF. Suppose, if possible, that there were a second point p_v for which $\sigma(v) = \bar{\sigma}$. Then, by Theorem 3, since $\bar{\sigma} > 0$, there would be a point p_w for which

$$\sigma(w) > \frac{1}{2} [\sigma(u) + \sigma(v)] = \bar{\sigma}.$$

But since no $\sigma(w)$ can exceed $\bar{\sigma}$, there cannot be a second point p_v of the type described.

THEOREM 5. Let p_u be a point on Σ for which $\sigma(u) = \bar{\sigma}$. If v satisfies the conditions ||v|| = 1 and ((u, v)) < 0, then the points $z_t = x_0 + tv$, t > 0, are exterior points of \Re .

PROOF. Let $p_u = x_0 + u$, ||u|| = 1, and $p_v = x_0 + v$, ||v|| = 1; and let $((u, v)) = -\lambda$, where $\lambda > 0$. Assume, if possible, that there is a point $z = x_0 + dv$, d > 0, belonging to \Re . Let w be the projection (defined in (I)) of z on the line through x_0 and p_u . Then

$$w = p_u + c(x_0 - p_u),$$

where

$$c = \frac{((z - p_u, x_0 - p_u))}{\|p_u - x_0\|^2} = ((z - x_0 - u, -u))$$
$$= ((dv - u, -u)) = 1 + \lambda d.$$

Hence,

$$w = p_u - (1 + \lambda d)u = x_0 - \lambda du.$$

On the segment joining x_0 to p_u , let $x_t = x_0 + tu$ be an inner point of \Re . Let y_t be the projection of x_0 on the line through x_t and z. Then

$$y_t = x_t + k(z - x_t)$$

where

$$k = \frac{((x_0 - x_t, z - x_t))}{\|z - x_t\|^2} = \frac{((-tu, dv - tu))}{\|z - x_t\|^2} = \frac{\lambda td + t^2}{d^2 + 2\lambda td + t^2},$$

since $z - x_t = z - x_0 + x_0 - x_t = dv - tu$ and

$$||z - x_t||^2 = d^2 - 2td((u, v)) + t^2 = d^2 + 2\lambda td + t^2.$$

From the above value of k, it is easily seen that 0 < k < 1, which means that y_i is a point of \Re . The following are easily established:

$$||y_t - x_0||^2 = \frac{t^2 d^2 (1 - \lambda^2)}{d^2 + 2\lambda t d + t^2} \neq 0,$$

since $\lambda \neq \pm 1$, and

$$||z-w||^2=d^2(1-\lambda^2).$$

From these, and previous results, we obtain

$$\frac{\|x_t - x_0\|^2}{\|y_t - x_0\|^2} = \frac{t^2(d^2 + 2\lambda td + t^2)}{t^2d^2(1 - \lambda^2)} = \frac{d^2 + 2\lambda td + t^2}{d^2(1 - \lambda^2)} = \frac{\|z - x_t\|^2}{\|z - w\|^2}.$$

Therefore, we have

(3)
$$\frac{\|x_t - x_0\|}{\|y_t - x_0\|} = \frac{\|z - x_t\|}{\|z - w\|} .$$

Now $s(y_t) = r(y_t)/||y_t - x_0||$ and $s(x_t) = r(x_t)/||x_t - x_0||$, where $r(y_t)$ and $r(x_t)$ denote the radii at the points y_t and x_t , respectively. Also $r(y_t) \ge (1-k)r(x_t)$, by Theorem 1 and the definition of y_t . Hence

(4)
$$\frac{s(y_t)}{s(x_t)} = \frac{r(y_t)}{\|y_t - x_0\|} \cdot \frac{\|x_t - x_0\|}{r(x_t)} \ge (1 - k) \frac{\|x_t - x_0\|}{\|y_t - x_0\|}$$

$$= (1 - k) \frac{\|z - x_t\|}{\|z - w\|},$$

the last equality being a consequence of (3).

But $k = ||y_t - x_t|| / ||z - x_t||$ and $1 - k = ||z - y_t|| / ||z - x_t||$. Therefore, from (4), we have

(5)
$$s(y_t) \ge \frac{||z - y_t||}{||z - w||} s(x_t).$$

Now,

$$\lim_{t\to 0}\frac{||z-y_t||}{||z-w||}=\frac{d}{d(1-\lambda^2)^{1/2}}=\frac{1}{(1-\lambda^2)^{1/2}}>1,$$

since z and w are independent of t, while $y_t \rightarrow x_0$ as $t \rightarrow 0$. Therefore, from (5),

$$\lim_{t\to 0} s(y_t) \ge \frac{1}{(1-\lambda^2)^{1/2}} \, \sigma(u) > \sigma(u) = \bar{\sigma}.$$

But this is impossible; hence the assumption that z was a point of \Re is untenable.

THEOREM 6. Let p_u be a point on Σ for which $\sigma(u) = \bar{\sigma}$. Then the plane

(6)
$$\pi(x) \equiv ((u, x - x_0)) = 0$$

is a supporting plane of \Re through the boundary point x_0 .

PROOF. If the plane (6) were not a supporting plane, there would be

a point z of \Re for which $\pi(z) < 0$. Let $v = (z - x_0) / ||z - x_0||$; then

$$((u, v)) = \frac{\pi(z)}{\|z - x_0\|} < 0, \qquad z = x_0 + \|z - x_0\|v.$$

But, v satisfies the conditions of Theorem 5; therefore z must be an exterior point of \Re . Consequently, there cannot be a point z of \Re for which $\pi(z) < 0$; and (6) is indeed a supporting plane.

THEOREM 7. Let x_0 be a given boundary point of the convex body \Re , and let Σ be the unit sphere about x_0 . There is a unique point $p_{\bar{u}}$ on Σ for which $\sigma(\bar{u}) = \bar{\sigma}$.

PROOF. We have only to show the existence of one point $p_{\bar{u}}$ for which $\sigma(\bar{u}) = \bar{\sigma}$. The uniqueness of this point will follow from Theorem 4.

From the definition of $\bar{\sigma}$ it follows that for any preassigned $\epsilon > 0$, there exists a point on Σ for which the value of σ is greater than $\bar{\sigma} - \epsilon$. Choose a monotone decreasing sequence of positive numbers $\{\epsilon_n\}$ with limit zero. Corresponding to each ϵ_n there exists a point p_{un} on Σ for which $\sigma(u_n) > \bar{\sigma} - \epsilon_n$. We wish to show that the sequence of points $\{p_{un}\}$ on Σ converges.

Let $p_{u_n} = x_0 + u_n$, $||u_n|| = 1$, and $p_{u_m} = x_0 + u_m$, $||u_m|| = 1$. Then

(7)
$$||p_{u_n} - p_{u_m}||^2 = 2 - 2((u_n, u_m)).$$

Let $w = \frac{1}{2}(1/\xi)(u_n + u_m)$, where ξ is so chosen that ||w|| = 1. Then we have

(8)
$$\xi^2 = \frac{1}{2} [1 + ((u_n, u_m))].$$

Let $p_w = x_0 + w$; from the proof of Theorem 3, we know that

$$\sigma(w) \ge \frac{1}{2\xi} \left[\sigma(u_n) + \sigma(u_m) \right] > \frac{1}{2\xi} \left[2\bar{\sigma} - \epsilon_n - \epsilon_m \right].$$

But $\bar{\sigma} \ge \sigma(w)$; hence $\bar{\sigma} > (1/\xi) [\bar{\sigma} - (\epsilon_n + \epsilon_m)/2]$, from which

$$\xi^2 > \left[1 - \frac{1}{2\bar{\sigma}} \left(\epsilon_n + \epsilon_m\right)\right]^2$$
.

Using the value of ξ^2 from (8) we easily find that

$$((u_n, u_m)) > 2\left[1 - \frac{1}{2\bar{\sigma}}(\epsilon_n + \epsilon_m)\right]^2 - 1.$$

Then using (7), we obtain

(9)
$$||p_{u_n} - p_{u_m}||^2 < \frac{4}{\bar{\sigma}} (\epsilon_n + \epsilon_m) - \frac{1}{\bar{\sigma}^2} (\epsilon_n + \epsilon_m)^2.$$

Since $\lim_{n,m\to\infty} \|p_{u_n} - p_{u_m}\| = 0$ and the space \mathfrak{S} is complete, as was assumed in (I) and throughout this paper, the sequence $\{p_{u_n}\}$ converges to a point $p_{\bar{u}}$. This point $p_{\bar{u}}$ is on Σ , and moreover $\sigma(\bar{u}) = \bar{\sigma}$, since it is easily shown that $\sigma(\bar{u})$ is greater than $\bar{\sigma} - \epsilon$ for any preassigned positive ϵ .

Theorem 8. A convex body \Re is completely supported at its boundary points.

PROOF. Let x_0 be a boundary point of \Re . There exists a point p_u on the unit sphere Σ about x_0 for which $\sigma(u) = \bar{\sigma}$, by Theorem 7. Hence the plane $((u, x - x_0)) = 0$ is a supporting plane of \Re through x_0 , by Theorem 6. Since similar statements can be made for each boundary point, \Re is completely supported at its boundary points.

From the material above, the following additional result may be established without much difficulty:

COROLLARY 3. There exists a unique supporting plane through the boundary point x_0 of the convex body \Re only if $\bar{\sigma} = 1$; for $\bar{\sigma} < 1$, there is an infinite number of supporting planes through x_0 .

A primary classification of boundary points of a convex body may thus be made in terms of $\bar{\sigma}$, which is a function defined over the boundary of the convex body.

CARNEGIE INSTITUTE OF TECHNOLOGY