ON THE SUPPORTING-PLANE PROPERTY OF A
CONVEX BODY!

DAVID MOSKOVITZ AND L. L. DINES

In an earlier paper,? the authors have shown that in a linear space
& with an inner product, a set I which is closed and linearly con-
nected is supported ‘at a set of boundary points which is everywhere
dense on the boundary of I, and an example is given to show that
such a set I may have boundary points through which no supporting
plane exists. The purpose of this paper is to show that if a set, in
addition to being linearly connected and closed, also possesses inner
points, then it is completely supported at its boundary points. In (I),
reference was made to a paper by Ascoli in which such a result was
obtained in a separable space. We do not assume our space & to be
separable. The definitions and results of (I) will be used in this paper.

A set R, which is a proper subset of the space &, will be called a
convex body if it is linearly connected, closed, and possesses inner
points. In the sequel & will always denote a convex body.

With reference to the set &, there is associated with each point %
of the space & a nonnegative number 7(x): if x is an inner point
of &, r(x) is defined as the least upper bound of the radii of spheres
about x which do not contain points exterior to &; for other points
of &, r(x) is defined to be zero. We will call »(x) the radius at the
point x.

If x, is a point of R, all points & of the sphere ||z —i| <r(x.) are
points of &.

THEOREM 1. Let r, and r: be the radii at the poinis x, and x,, respec-
tively, of the convex body K. Then the radius r at the point

x = x1 + k(x2 — x1), 0

IA

k=1,
satisfies

1%

r=r+ k(rs — r1).

PrOOF. Let y=x-+pu, where p=r+k(rs—71) and ||4|=1. The
points ¥, =x;+7u and y; =x2+7:% are points of . But from the defi-
nitions of x, p, and y, it follows that y=y,+%(y.—y:). Hence y, being
on the segment joining y; and ¥, is also a point of ®. Consequently

1 Presented to the Society, September 5, 1939.
2 On convexity in a linear space with an inner product, Duke Mathematical Journal,
vol. 5 (1939), pp. 520-534. Hereafter, this paper will be referred to by (I).
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all points on the boundary of the sphere with radius p and center %
are in . Since R is linearly connected, also all points within this
sphere are in ®. Therefore 7= p and the theorem is established.

The following corollaries, which appear self-evident in ordinary
space, can be shown to be direct consequences of the preceding theo-
rem,

CoROLLARY 1. Each point of the segment joining two inner points
of 8 is an inner point of &.

COROLLARY 2. If % is a boundary point and x, an inner point of &,
then the points x =x1+k(xo—x1) are inner points of & for 0Sk<1, and
exterior points for k>1.

With reference to a given boundary point x, of the set &, there is
associated with each point x, other than x,, of the space & a non-
negative number s(x), defined by?

s(x) = r(x)/”x — xOH .

If x is an exterior point or a boundary point of &, other than x,
s(x) is equal to zero; if x is an inner point of &, s(x) is positive; s(xo)
is not defined.

It is also obvious that s(x) =1, since 7(x) é”x—xo”.

THEOREM 2. Let xo be a given boundary point of the convex body &,
and let x, be given by

(1) ®e = %0 + lu, where t > 0, ||uf| = 1.

Then, for fixed u,
(a) s(x:) is a non-decreasing function as t—0; and
(b) limg.o s(x:) exists.

PRroOF. In case there are no points of & given by (1), the theorem
is obviously true, for then

s(x;) =0 for t>0, lim s(%;) = 0.

—0

In case there are points of & given by (1), let x; and x; be two points
of & on (1) for parameter values £, and ¢, where ¢, <#t;; then we have
X = %o + Lo, Xo = Xo + lows;

s(xl) T(xl)/h, S(xz) = r(xz)/tz.

8 Since s is a function of x, as well as x, a more explicit notation would be s(xo, %) ;
but the simpler notation will suffice, inasmuch as the function is to be used in the
sequel only with reference to a fixed boundary point %,.

(2)
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But x;=x0-+ (fi/f2) (xs—x0), and hence, by Theorem 1, we have

131
r(x1) = — (%),
12
since 7(x9) =0. Therefore, by (2), s(x1) =s(x2).

This result establishes part (a) of the theorem. Since s(x;) cannot
exceed one, obviously part (b) of the theorem is true.

Let 2 be the unit sphere about xo; and let p, be the point on 2
given by pu=xo+u, ||u||=1. Let x,=xo+tu, (0<t<1), be the seg-
ment joining xo to p,; and let*

o(u) = lim s(x;).
-0
We thus have a function ¢(#) uniquely defined at each point p, on
the sphere 2. Obviously, by its definition, we have

0= o(u) £1.

Also o(u) =0 only if the segment joining x, to p, does not contain
any inner points of ®. If the segment joining x¢ to p, contains inner
points of &, we have o(u)>0.

LemMaA 1. Let p, and p, be two points on Z, such that
Pu = %9+ u, po = %0+ v, V= — U,
Then at least one of the numbers a(u) or o(v) is equal to zero.
ProoF. Assume o(z) >0; then the segment joining xo to p, con-

tains inner points. Consequently, by Corollary 2, the segment joining
xo to p, does not contain any inner points. Therefore, o(v) =0.

THEOREM 3. Let xo be a given boundary point of the convex body 8,
and let Z be the unit sphere about x,. Let p, and p, given by

pu=2x0+u, |4 =1, po=wxm+o, | =1

be two distinct points on Z, for which o(u) and o(v) are both positive.
Then there exists a point p., distinct from p, and p, for which

o(w) > 3[o(w) + o(v)].

4 The limit was shown to exist in Theorem 2; we are denoting the value of this
limit by o(%). It may be of interest to note that

r(x) — 7(x0)

o(u) = lim s(x)= lim = ru(x0)
o

z—-xg, along z;=xo+ 0 z—20 “x -

is the directional derivative of r(x) at x in the direction «.
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Proor. Let x; and y, be points of & given by

X = %o + tu, Ve = %o + tv, 0<Kt<1,
and let ((#, v)) =\. Then, certainly I)\] <1. Butif A\=1, u=v, and p,
and p, are not distinct. If A= —1, = —v, in which case not both of

the numbers o(#) and ¢(v) can be positive, because of Lemma 1. Con-
sequently, we have

-1 <A<

Let z;=%(x:+y:); then 3, =x,+ &w, where “w” =1and £=3(14N)V2
Thus

0<EL.

We thus have a point p,, on the sphere Z defined by p, =x¢+w. Now,
r(ze) =3 [7(x:) +7(ys) ], by Theorem 1. Hence

7(2:) 1r(xs) | 7(0)
& gz_s[ P T ]

s(ze) =

=% s(x) + s(y0)],

and

lim s(z,) = 1 lim [s(x:) + s(y5)],
2£ t—0

t—0

from which
- 1 [ 1
o(w) = % o(u) + o(v)] > > [o(x) + o(v)].

Thus the theorem is established.

Let ¢ denote the least upper bound of the function o (%) as p, varies
over the sphere Z. Then, also 0<¢=1; and ¢=0 is possible only for
sets which do not have any inner points. For a convex body &, we
have 0<s=1.

In the material which follows, it is to be understood that x, is a
Jfixed boundary point of the convex body &, s(x) is defined relative to
%9, 2 is the unit sphere about x,, o(%) is the function defined above on
the boundary of 2, and ¢ the least upper bound of o(%) on 2.

THEOREM 4. If there is a point p, on Z for which o(u) =g, this point
s unique.

ProOF. Suppose, if possible, that there were a second point p, for
which o(v) =¢. Then, by Theorem 3, since ¢ >0, there would be a
point p,, for which
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o(w) > [o(u) + o(v)] = 5.

But since no ¢(w) can exceed 7, there cannot be a second point p, of
the type described.

THEOREM 5. Let p, be a point on 2 for which o(u) =0c. If v satisfies
the conditions Hv” =1 and ((u, v)) <0, then the points z,=x,+1tv, 1>0,
are exterior points of R.

PrROOF. Let pu=xo+u, |[u]|=1, and p,=x0+v, ||o]|=1; and let
((u, v)) = —\, where A >0. Assume, if possible, that there is a point
z=x9+4dv, d >0, belonging to . Let w be the projection (defined
in (I)) of z on the line through x¢ and p.. Then

w = ﬁu'l" C(xo - Pu);

where
((z = pu, %0 — pu))
¢ = = (s — w0 — #, — w)
Tpe — ° ’
= ((dv — %, — u)) = 1+ \d.
Hence,

w = p, — (1 + N)u = x9 — Ndu.

On the segment joining % to pu., let x;=x0+iu be an inner point
of &. Let v, be the projection of x, on the line through x; and z. Then

ye = % + k(z — x))
where
b (20 — %, 2 — %)) _ (= tu, dv — tu)) _ Nd 4 #? )
P P St ot e
since 2—xy=8—x¢+x¢—x, =dv—tu and

|z — 2|2 = d2 — 2td((w, v)) + 2 = d* + 2nd + 2.

From the above value of &, it is easily seen that 0 <k <1, which
means that y, is a point of &. The following are easily established:
$2d%(1 — \?)

— ®l|l= —mmmm—#0
lye = will* = +ond 420 )
since A% +1, and

llz — wl|z = d2(1 — %),


file:////pu-
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From these, and previous results, we obtain

0 — xof|? 2@+ 2d+ ) @+ 22d+ 2 s — &

|ye — |2 e -\ 21— |z — |2 .

Therefore, we have

oo = sl _fle— x|
Te= sl ~ Tz = ol

Now s(v:) =r(0)/||ye—=d| and s(x:) =7(x.)/||xc—xd||, where r(y:)
and 7(x,) denote the radii at the points y, and x, respectively. Also
r(y:) 2 (1 —k)r(x:), by Theorem 1 and the definition of y,. Hence

3)

s(y) _ H 7(ys) H th - xo“ > (1— %) ”x: - on
@ s(@)  {lye = x| (=) l3e — ]
N

Iz — =ll

the last equality being a consequence of (3).

But k=||y.—x/|/||z—x4| and 1—E=]||z—y,||/||z—=/]|. Therefore,
from (4), we have

(5) s(y) 2 Iz = >l s(x0).
|z — ]|

Now,

lo=od @ 1

li = = {
zl—l?; Hz —_ w“ d(1 — )\2)1/2 (1 _ )\2)1/2 > 1,

since 2z and w are independent of ¢, while y,—x, as {—0. Therefore,
from (5),

. 1 -
111_1"13 S(yt) 2 (1——)\2)1/20‘<M) > 0'(14) = 0.

But this is impossible; hence the assumption that z was a point of &
is untenable.

THEOREM 6. Let p, be a point on = for which o(u) =. Then the plane
(6) m(x) = ((#, x — x0)) = 0
is a supporting plane of & through the boundary point x,.

Proor. If the plane (6) were not a supporting plane, there would be


file:////yt-

488 DAVID MOSKOVITZ AND L. L. DINES [June
a point z of ® for which 7(z) <0. Let v=(2—x0)/||z—=||; then
<0, z = xo+Hz— onv.

But, v satisfies the conditions of Theorem 5; therefore z must be an
exterior point of ®. Consequently, there cannot be a point z of & for
which 7(2) <0; and (6) is indeed a supporting plane.

THEOREM 7. Let x, be a given boundary point of the convex body R,
and let Z be the unit sphere about x,. There is a unique point p; on Z
for which o(%) =g.

Proor. We have only to show the existence of one point p; for

which o () =¢. The uniqueness of this point will follow from Theo-
rem 4.

From the definition of ¢ it follows that for any preassigned >0,
there exists a point on Z for which the value of ¢ is greater than
7 —e. Choose a monotone decreasing sequence of positive numbers
{ €.} with limit zero. Corresponding to each ¢, there exists a point pu,
on 2 for which o(#,) > —€,. We wish to show that the sequence of
points {pu..} on T converges.

Let pu,=x0+tn, ”un” =1, and pu, =%+ %m, Hum” =1. Then

(7) H?un - PumH2 =2- 2((“7») Mm))

Let w=%(1/¢)(un+un), where £ is so chosen that ”w“ =1. Then we
have

(8) £ =31+ ((un, um))].

Let pu=x0+w; from the proof of Theorem 3, we know that
() 2 — [o(un) + olum)] > — [25 ]
O'W=2£G'Mn o(Um 23’: ag €n €Eml.

But 620 (w); hence > (1/£) [¢— (en+€x)/2], from which

1 2
£2 > [1 - (en + Gm)]
2¢
Using the value of £2 from (8) we easily find that

((thny 2m)) > 2 [1 - %; (en + em)]2— 1.

Then using (7), we obtain
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4 1
9 1pun = Dunll? < — (en + em) — = (en + em)?.
g g

Since liMg, mw || pu, — u,|| =0 and the space & is complete, as was
assumed in (I) and throughout this paper, the sequence {pu,,} con-
verges to a point p;. This point p; is on Z, and moreover ¢(%) =7,
since it is easily shown that o(#) is greater than ¢—e€ for any pre-
assigned positive e.

THEOREM 8. A convex body R is completely supported at its boundary
points.

ProoF. Let xo be a boundary point of ®. There exists a point p,
on the unit sphere £ about x, for which ¢(#) =g, by Theorem 7.
Hence the plane ((%, x —x,)) =0 is a supporting plane of { through x,,
by Theorem 6. Since similar statements can be made for each bound-
ary point, & is completely supported at its boundary points.

From the material above, the following additional result may be
established without much difficulty:

COROLLARY 3. There exists a unique supporting plane through the
boundary point xo of the convex body K only if 6=1; for ¢ <1, there is
an infinite number of supporting planes through x,.

A primary classification of boundary points of a convex body may
thus be made in terms of &, which is a function defined over the
boundary of the convex body.
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