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1. Introduction. As is well known, two linearly ordered sets A and 
B are said to be similar if there exists a 1-1 correspondence between 
their elements which preserves order. A function ƒ which defines such 
a 1-1 correspondence may be called a similarity transformation on A 
to B. In this note we consider two problems concerning similarity 
transformations which do not seem to have received attention hereto­
fore. The first problem is the following: 

(A) Is it true that every infinite ordered set is similar to a proper sub­
set of itself?2 

Before stating the second problem we recall a classical theorem 
concerning well-ordered sets.3 

THEOREM. If the set A is well-ordered, and if ƒ is any similarity 
transformation on A to a subset of A, then f (a) ^ a for every a in A. 

I t is natural to inquire whether this theorem characterizes well-
ordered sets—and this is our second problem; more explicitly: 

(B) Let A be a linearly ordered set such that if ƒ is any similarity 
transformation on A to a subset o f A then f {a) ^afor every a in A. Is it 
true that any such set A is well-ordered? 

We will demonstrate that if the set A is denumerable, then the 
answer to both questions is in the affirmative. An example will then 
be constructed to show that these conclusions need not hold if the 
set A is nondenumerable. 

2. The denumerable case. We obtain first the following result: 

THEOREM 1. Every denumerably infinite linearly ordered set A con-
tains a proper subset A ' to which it is similar. 

PROOF. For any two elements a and b of A, we will say that a and b 
are congruent if either a — b or if there is only a finite number of ele-

1 Presented to the Society, September 8, 1939. 
2 This question is a natural one, in view of the familiar definition of an infinite set 

as one which is equivalent to a proper subset of itself. 
3 For theorems mentioned in this paper one may refer to Hausdorff's GrundzUge 

der Mengenlehre, 1st edition, 1914, or to Sierpinski's Leçons sur les Nombres Transfinis, 
1928. 
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ments in A which lie between a and b ; we will indicate this by writing 
a^b. The set of all elements of A congruent to a given element a will 
be designated by C(a) and will be called the congruence set correspond­
ing to a. I t is obvious that if 6 e C(a), then C(b) = C(a), and hence that 
any two different congruence sets have no elements in common. We 
now distinguish two cases. 

Case 1. There is an a in A for which C(a) is infinite. 
Since every element of C(a) has either an immediate predecessor 

or an immediate successor in C(a), it is clear that the order-type of 
C{a) is either co or co* or co*+co. Suppose, for example, that the order-
type of C(a) is co. Since every element of A which is not in C(a) either 
precedes or succeeds all the elements of C(a), we will have A =A 1+A2 
+As, where A2 — C(a), A\ is the set of all elements of A which precede 
C(a), and A$ is the set of all the elements of A which follow C{a). We 
now define a function ƒ on A to a subset of A as follows: 

(a) If a e Ai, or a e As, then f (a) =a. 
(b) If a zA^ then f (a) is the successor of a in C(a). 
This function is clearly a similarity transformation ; moreover, the 

set A' into which A is transformed by ƒ does not contain the first 
element of C(a), and A' is thus a proper subset of A. The case where 
the order-type of C{a) is co* or co*+co may be handled in an analogous 
fashion. 

Case 2. All the different congruence sets in A are finite sets. 
Since A is denumerable, the set of all congruence sets in A is also 

denumerable. Let A be the ordered subset of A which consists of all 
first elements of congruence sets in A, and let a and j8, (ce</3), be any 
two elements of A. There must exist a 7 in A for which a<y<fi (for, 
if not, then clearly a =(3 in A, which would contradict the fact that a 
and |8 belong to two different congruence sets). Thus A is a denumer­
able dense set, and any open interval of it, for example, the set (a, j8) 
of all elements of A between a and /?, would also be a denumerable 
dense set. I t is well known4 that such a set contains a subset similar 
to any given denumerable ordered set. Let A ' be a subset of (ce, /3) 
which is similar to A. I t is clear that A' is a proper subset of A, and 
Theorem 1 is thus completely demonstrated. 

THEOREM 2. If the denumerably infinite ordered set A is such that any 
similarity transformation f on A to a subset of A has the property 
f (a) ^afor every a in A, then A is a well-ordered set. 

PROOF. We notice at once that A cannot contain a subset A which 

4 See, for example, Sierpióski, loc. cit., pp. 147-148. 
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is dense. For, if A is such a subset, let A be the lower segment of Z 
which consists of all the elements of A which precede some element b 
in A. Then "A would be a denumerable dense set, and, as was pointed 
out in the proof of Theorem 1, A would contain a subset A' similar 
to Ay that is, there would exist a similarity transformation ƒ on A 
to A'. Since fib) e A', and all elements of A' precede &, we would 
obtain ƒ(&) <b\ but this is impossible, by our hypothesis. 

We now redefine "congruent" elements of A as follows: a = & if and 
only if (1) a = b or (2) the closed interval of A which consists of a 
and b and all the elements of A between a and b is, as an ordered sub­
set of Ay a well-ordered set. In the present sense, the congruence sets 
have the following properties : 

(1) Two different congruence sets have no elements in common. 
(2) Any upper segment, or any open or closed interval of a con­

gruence set, is a well-ordered set. 
(3) If a £ C(b)y then a either precedes all, or succeeds all of the ele­

ments of C(b). 
I t may be emphasized, however, that a lower segment of a con­

gruence set is well-ordered only if the congruence set has a first ele­
ment. We again distinguish two cases. 

Case 1. Every congruence set in A has a first element, that is, every 
congruence set is well-ordered. 

In this case, we will show that there can be only one congruence 
set altogether; the set A will thus be identical with this unique con­
gruence set, and will therefore be well-ordered. To see that we cannot 
have more than one congruence set here, suppose the contrary, and 
let a and /?, (a</3), be the first elements of any two different con­
gruence sets, which sets may be designated by C(a) and C(/3). If there 
were in A no element c which separates C(a) and C(/5), then the set 
D = C(a) + C(j3), considered as an ordered subset of A, would be an 
interval of A which is well-ordered. This would mean that a==/3; but 
this cannot be, since a and /3 belong to different congruence sets. 
Hence, there must exist a congruence set C ( Y ) , whose first element 
is 7, such that C(a) < C(y) < C(/3)> and we would thus have a < y <0 . 
This means that the set A ' of all the first elements of congruence sets 
in A will be a dense set—contrary to the fact that A cannot contain 
such a subset. 

Case 2. There is a congruence set C without a first element. 
We will show that this supposition leads to a contradiction, so that 

this case cannot actually arise. The proof of our theorem will then be 
complete. 

We can find in C a sequence of elements c\ > Ci > c3 > • • • > cn > • • • 
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such that for every d in C there is a natural number n for which 
cn^d. The set of elements [ci+u ci) of C between d and ct-+i, inclusive 
of Ci+i, is a well-ordered set; let ft be the order-type of this set, and 
consider the sequence of ordinals ft, ft, • • • , ft, • • • thus defined. 
There can be only a finite number of indices k such that for all n>k, 
ft<ft (otherwise one would obtain an infinite sequence of decreasing 
ordinals, which is impossible). Hence, there will exist an index r such 
that for every p^r there will be infinitely many indices q>p for 
which ft^ft. In other words, for i = r, r + 1 , r+2> • • • the set 
[ci+i, Ci) will be similar to a subset of some [£flt-+i, cq.) where qi>i, 

and where moreover, qt<qr+i<qr+2< • • . We now express A as the 
sum of three sets Au A2 and AS) where A2 consists of all the elements 
of C preceding cr, A± consists of all elements of A preceding every 
element of Ai, and Az consists of all the elements of A following every 
element of A2. Define now a function ƒ on A to a subset of A as fol­
lows: If a tAi or a zAz,f{a) =a. Suppose that a zA^ There will be an 
i^r for which a e [c»-+i, ci), a n d since [c*+i, Ci) is similar to a subset of 
[cqi+i, cqi), there will be a Y« in this last set which corresponds to a 

under such a similarity. We define, for a e A2,f(a) =7«. 
This function is clearly a similarity transformation on A to a sub­

set of itself, and for any a in A2 we have / (a ) = y a < a ; but this is im­
possible, by our hypothesis. 

I t may be observed that up to this point it has not been necessary 
to make use of Zermelo's axiom of choice. 

3. The nondenumerable case. We now prove the following result: 

THEOREM 3. The linear continuum C contains a set E> of power c, 
which is not similar to any proper subset of itself. 

PROOF. A similarity transformation of C into a subset of itself is a 
monotonie increasing function of a real variable, and vice versa. 
Hence, there are exactly c such transformations. Let £2C denote the 
first ordinal to correspond to the cardinal number of the continuum, 
and arrange all of these transformations, with the exception of the 
identity, in a well-ordered series of type Qc: Tu T2, • • • , Ta, • • • , 
(<a<Qc). 

Now, the fixed points under a monotonie transformation which is 
not the identity cannot be everywhere dense in C. Hence, if T is such 
a transformation, there are c points p such that T(p) y^p. We may 
accordingly choose a point pi such that Ti(pi) =qi9£pu We now as­
sume that pp and q$ have been defined for all /3<a:<Œc, and choose 
distinct points pa and qa in C—^BKaiPa+qi) such that Ta(p<*)=([<*• 
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This is possible for every ce<flc, since the power of 1L,8<<X(PB-\-Q8) is 
less than c. 

We notice first that if C' is any interval on C, then there exists a 
monotonie increasing function which is the identity on C—C and is 
not the identity on C'. Therefore there is an a such that pa £ C'. 
Hence the set E =^2a<ücpa is dense on C. It now follows that there 
is no similarity transformation of E into a proper subset of itself. In 
fact, we can show that the only similarity transformation of E into 
a subset of itself is the identity. For assume that r is a similarity 
transformation, other than the identity, of E into a subset of itself. 
Since r is not the identity and since E is dense in C, there exists an a 
such that Ta agrees with r on E. But this is impossible, since 
Ta(pa) =$*, and qa is not a point of E. 

THEOREM 4. The linear continuum contains a set E which is not 
well-ordered, but which has the property that if f is any similarity trans­
formation of E into a subset of itself, then f {e) ^e for every e in E. 

PROOF. The set E constructed in the proof of Theorem 3 satisfies 
these requirements. 
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