A NOTE ON HERMITIAN FORMS¹

N. JACOBSON

In this note we effect a reduction of the theory of hermitian forms of two particular types (coefficients in a quadratic field or in a quaternion algebra with the usual anti-automorphism) to that of quadratic forms. The main theorem (§2) enables us to apply directly the known results on quadratic forms. This is illustrated in the discussion in §3 of a number of special cases.

Let Φ be an arbitrary quasi-field of characteristic different from 2 in which an involutorial anti-automorphism $\alpha \to \bar{\alpha}$ is defined. For the present we do not exclude the cases where Φ is commutative and $\bar{\alpha} \equiv \alpha$ or Φ is a quadratic field with $\alpha \to \bar{\alpha}$ as its automorphism. Suppose \Re is an *n*-dimensional vector space over Φ . We define a bilinear form (x, y) as a function of pairs of vectors with values in Φ , such that

(1)
$$(x_1 + x_2, y) = (x_1, y) + (x_2, y), (x, y_1 + y_2) = (x, y_1) + (x, y_2),$$

 $(x, y\alpha) = (x, y)\alpha, (x\alpha, y) = \bar{\alpha}(x, y),$

for all x, y in $\mathfrak R$ and α in Φ . If x_1, x_2, \dots, x_n is a basis for $\mathfrak R$ and $(x_i, x_j) = \alpha_{ij}$, the matrix $A = (\alpha_{ij})$ is called the matrix of (x, y) relative to this basis. By (1) it determines (x, y) as $\sum \bar{\xi}_i \alpha_{ij} \eta_j$, if $x = \sum x_i \xi_i$ and $y = \sum x_i \eta_i$. If y_1, y_2, \dots, y_n where $y_i = \sum x_j \rho_{ii}$ is a second basis for $\mathfrak R$ where $R = (\rho_{ij})$ is nonsingular, the matrix of (x, y) relative to this basis is $\overline{R}'AR$. We call A and $\overline{R}'AR$ cogredient. The form (x, y) is hermitian (skew-hermitian), if $(y, x) = (\overline{x}, \overline{y})$ ($(y, x) = -(\overline{x}, \overline{y})$). This is equivalent to the condition $\overline{A}' = A$ ($\overline{A}' = -A$).

It is readily seen that we may pass from the basis y_i to the x's by a sequence of substitutions of the following two types:

I.
$$y_i \rightarrow y_i$$
, $(i \neq r)$, $y_r \rightarrow y_r + y_s \theta$, $(s \neq r)$.

II.
$$y_i \rightarrow y_i$$
, $(i \neq r)$, $y_r \rightarrow y_r \theta$, $(\theta \neq 0)$.

It follows that we may pass from a matrix to any other matrix cogredient to it by a sequence of transformations of the corresponding types:

- I. Addition of the sth column multiplied on the right by θ to the rth together with addition of the sth row multiplied on the left by $\bar{\theta}$ to the rth.
- II. Multiplication of the rth column on the right by $\theta \neq 0$ together with multiplication of the rth row on the left by $\bar{\theta}$.

We showed in an earlier paper that any hermitian form or skew-

¹ Presented to the Society, October 28, 1939.

hermitian form with $\bar{\alpha} \neq \alpha$ has a matrix in diagonal form; that is, there is a basis u_1, u_2, \dots, u_n for \Re such that $(u_i, u_j) = 0$, if $i \neq j$. We call a basis of this type orthogonal and u, v orthogonal, if (u, v) = 0. If $(u_i, u_i) = \beta_i \neq 0$ for $i \leq r$ and $(u_i, u_i) = 0$ for i > r, we obtain the diagonal matrix

$$[\beta_1, \beta_2, \cdots, \beta_r, 0, \cdots, 0]$$

for our form.³ The element β_1 may be taken to be any nonzero element represented by the form, that is, any element for which a u_1 exists such that $(u_1, u_1) = \beta_1$, β_2 is any element represented by (x, y) restricted to the space of vectors orthogonal to u_1 , and so on. We note also that β_i may be replaced by $\bar{\gamma}_i\beta_i\gamma_i$, $(\gamma_i \neq 0)$.

The space \Re_0 generated by u_{r+1} , u_{r+2} , \cdots , u_n may be characterized as the totality of vectors z, such that (x,z)=0 for all x. The space \Re_1 generated by u_1, u_2, \cdots, u_r satisfies the condition $\Re = \Re_0 + \Re_1$, $\Re_0 \cap \Re_1 = 0$. If \Re_2 is a second space of this sort, it has a basis of the form $u_i + z_i$, $(i = 1, \cdots, r)$, and hence the matrices of (x, y) in \Re_1 and in \Re_2 are cogredient. We may therefore restrict our attention to nondegenerate forms $(\Re_0 = 0)$ and shall do so in the remainder of this note.

Two nondegenerate forms $(x, y)_1$ and $(x, y)_2$ in \Re and \Re' respectively are *cogredient* if there is a (1-1) correspondence $x \rightarrow x'$ between \Re and \Re' such that $(x, y)_1 = (x', y')_2$. It follows that

$$(x', (y_1 + y_2)')_2 = (x', y_1' + y_2')_2$$

and hence that $(y_1+y_2)'=y_1'+y_2'$. Similarly $(y\alpha)'=y'\alpha$ and so $x\to x'$ is a linear transformation and \Re and \Re' have the same dimensionality. If x_1, x_2, \dots, x_n is a basis for \Re , then x_1', x_2', \dots, x_n' is one for \Re' . The matrix of $(x, y)_1$ relative to the first basis is the same as that of $(x', y')_2$ relative to the second. Hence the matrices of $(x, y)_1$ and $(x', y')_2$ relative to any bases are cogredient and conversely cogredience of the matrices implies that of the forms.

We shall suppose from now on that Φ is either a quadratic field $\Phi_0(i)$, $i^2 = -\lambda$ and $\bar{\alpha} = \alpha_0 - i\alpha_1$ for $\alpha = \alpha_0 + i\alpha_1$ or that $\Phi = \Phi_0(i, j)$ is a quaternion algebra in which $i^2 = -\lambda$, $j^2 = -\mu$, k = ij = -ji and $\bar{\alpha} = \alpha_0 - i\alpha_1 - j\alpha_2 - k\alpha_3$ for $\alpha = \alpha_0 + i\alpha_1 + j\alpha_2 + k\alpha_3$. We suppose also that (x, y) is hermitian. Then (x, x) ε Φ_0 and any β in (2) may be replaced

² Simple Lie algebras over a field of characteristic zero, Duke Mathematical Journal, vol. 4 (1938), p. 542.

³ The above notation for diagonal matrices will be used throughout this note.

⁴ R and R' have the same quasi-field and anti-automorphism.

by $\beta N(\gamma)$, $N(\gamma) = \bar{\gamma}\gamma$. Let Φ_0' be the multiplicative group of nonzero elements in Φ_0 , Φ_0^* the subgroup of norms, and $\Gamma = \Phi_0' / \Phi_0^*$. A determinant for any hermitian matrix A has been defined by E. H. Moore. We recall that, if a matrix B has the form (2) with r = n, then det $B = \beta_1 \beta_2 \cdots \beta_n$ and, if $A = \overline{R}'BR$, det $A = N(\rho)$ det B. Thus the coset of det A in Γ is an invariant of the class of matrices cogredient to A (or an invariant of the form). We shall call this coset the discriminant of A (or of the form).

 \Re may be regarded as a vector space of 2n or 4n dimensions over Φ_0 and

(3)
$$\{x, y\} = (1/2)[(x, y) + (y, x)] = (1/2) \operatorname{tr}(x, y)$$

is a symmetric form in \Re over Φ_0 . The symmetric form $\{x, y\}$ satisfies the special condition

(4)
$$\{x\alpha, y\alpha\} = \{x, y\} N(\alpha),$$

whence

$$\{x\bar{\alpha}, y\} = \{x\bar{\alpha}, y\bar{\alpha}^{-1}\bar{\alpha}\} = \{x, y\bar{\alpha}^{-1}\}N(\alpha) = \{x, y\alpha\}.$$

Hence, if $\bar{\alpha} = -\alpha$, $\{x, x\alpha\} = -\{x\alpha, x\} = 0$. Conversely, if $\{x, y\}$ is any symmetric bilinear form in \Re over Φ_0 such that (4) holds, (x, y) defined by

(5)
$$(x, y) = \begin{cases} \{x, y\} - (i/\lambda) \{x, yi\}, & \text{if } \Phi = \Phi_0(i), \\ \{x, y\} - (i/\lambda) \{x, yi\} - (j/\mu) \{x, yj\} \\ - (k/\lambda\mu) \{x, yk\}, & \text{if } \Phi = \Phi_0(i, j), \end{cases}$$

is hermitian in \Re over Φ . The relation between (x, y) and $\{x, y\}$ is a reciprocal one and $\{x, y\}$ is nondegenerate if (x, y) is.⁶

Evidently, if $(x, y)_1$ in \Re over Φ and $(x', y')_2$ in \Re' over Φ are cogredient, then $\{x, y\}_1$ and $\{x', y'\}_2$ are cogredient also. Suppose now that $\{x, y\}_1$ and $\{x', y'\}_2$ are cogredient. Then we have u_1 and u_1' , such that $\{u_1, u_1\}_1 = \{u_1, u_1\}_1 = \{u_1', u_1'\}_2 = (u_1', u_1')_2 = \beta_1 \neq 0$. Let \Re_1 and \Re_1' respectively denote the spaces of vectors orthogonal to u_1 and u_1' relative to $(x, y)_1$ and $(x', y')_2$. The space \Re_1 may also be characterized as the set of vectors orthogonal to u_1 , u_1i if $\Phi = \Phi_0(i)$, or to u_1, u_1i, u_1j, u_1k , if $\Phi = \Phi_0(i, j)$, with respect to $\{x, y\}_1$. A similar

⁵ General Analysis, I, American Philosophical Society Publication, Philadelphia, 1935.

⁶ We make use of the relation $a = \alpha_0 + i\alpha_1 + j\alpha_2 + k\alpha_3 = (1/2) [\text{tr } a - (i/\lambda) \text{ tr } ai - (j/\mu) \text{ tr } aj - (k/\lambda\mu) \text{ tr } ak].$

⁷ There exists a vector u_1 such that $(u_1, u_1) \neq 0$. Cf. Jacobson, loc. cit.

characterization holds for \Re_1' . The matrix of $\{x, y\}_1$ relative to u_1 , u_1i or u_1 , u_1j , u_1k and of $\{x', y'\}_2$ relative to u_1' , $u_1'i$ or u_1' , $u_1'i$, $u_1'j$, $u_1'k$ is

(6)
$$[\beta_1, \lambda \beta_1]$$
 or $[\beta_1, \lambda \beta_1, \mu \beta_1, \lambda \mu \beta_1]$.

Hence it follows from a theorem of Witt⁸ that $\{x, y\}_1$ and $\{x', y'\}_2$ are cogredient when restricted to \Re_1 and \Re_1' . By induction $(x, y)_1$ and $(x', y')_2$ are cogredient. Thus we have proved the following theorem:

THEOREM. A necessary and sufficient condition that two hermitian forms $(x, y)_1$ and $(x, y)_2$ be cogredient is that the corresponding symmetric forms $\{x, y\}_1$ and $\{x, y\}_2$ be cogredient.

If u_1, u_2, \dots, u_n is an orthogonal basis, $(u_i, u_i) = \beta_i$, then $u_1, u_1i, u_2, u_2i, \dots, u_n, u_ni$ or $u_1, u_1i, u_1j, u_1k, \dots, u_n, u_ni, u_nj, u_nk$ is an orthogonal basis for \Re over Φ relative to $\{x, y\}$ and the corresponding matrix, where B_i is as in (6), is

$$[B_1, B_2, \cdots, B_n].$$

We consider now some special cases:

- (1) $\Phi_0(i)$, where Φ_0 is a field in which every nondegenerate symmetric form in 5 or more variables is a null-form. Examples of such fields are (a) any p-adic field, (b) an algebraic function field of one variable over a finite constant field. In these cases any nondegenerate symmetric form in 4 or more variables represents every $\alpha \neq 0$ in Φ_0 . For, if $\{x, y\}$ represents 0, say $\{u, u\} = 0$, we choose v such that $\{u, v\} = \beta \neq 0$. Then $\{u\xi + v\eta, u\xi + v\eta\} = \eta(2\beta\xi + \gamma\eta), \gamma = \{v, v\}$ and the equation $\eta(2\beta\xi + \gamma\eta) = \alpha$ can be solved for ξ, η in Φ_0 . If $\{x, y\}$ does not represent 0, we form the vector space of (n+1) dimensions by adjoining z to \Re , and define $\{x\xi + z\eta, x\rho + z\sigma\} = \{x, x\}\xi\rho \alpha\eta\sigma$. Since this form represents 0, we have $\{x, x\}\xi^2 \alpha\eta^2 = 0$ for $\eta \neq 0$ since $\{x, x\} \neq 0$. Thus $\{x\xi\eta^{-1}, x\xi\eta^{-1}\} = \alpha$. It follows that any hermitian form in a space of 2 or more dimensions represents any α in Φ_0 . Hence we may choose $\beta_1 = \beta_2 = \cdots = \beta_{n-1} = 1$ in (2). Thus two forms are cogredient, if, and only if, they have the same discriminant.
- (2) $\Phi_0(i, j)$, Φ_0 of the same type as in case (1). Here we may take $\beta_1 = \cdots = \beta_n = 1$ and hence all nondegenerate forms are cogredient.
- (3) $\Phi_0(i)$, Φ_0 a real closed field. Here we may suppose $\lambda = 1$ and we may suppose $\beta_1 = \cdots = \beta_p = 1$, $\beta_{p+1} = \cdots = \beta_n = -1$. For $\{x, y\}$ we

⁸ Theorie der quadratischen Formen in beliebigen Körpern, Journal für die reine und angewandte Mathematik, vol. 176 (1936–1937), p. 34.

⁹ Witt, loc. cit., p. 40, and Albert, Quadratic null forms over a function field, Annals of Mathematics, (2), vol. 39 (1938), pp. 494-505.

- obtain 2p values +1 and (2n-2p) values -1 in the diagonal form. Since the signature is an invariant for bilinear forms it is invariant also for the hermitian form (x, y).
- (4) $\Phi_0(i,j)$, Φ_0 a real closed field. The considerations are similar to case (3). We find that two nondegenerate hermitian forms are cogredient if and only if they have the same signatures.¹⁰
- (5) $\Phi_0(i)$, Φ_0 an algebraic number field. As is well known, the symmetric forms $\{x, y\}_1$ and $\{x, y\}_2$ in \Re over Φ_0 are cogredient, if, and only if, they are cogredient in every p-adic extension of Φ_0 . Suppose first that p is a prime spot such that $(-\lambda/p)=1$, that is, $-\lambda$ is a square in the p-adic field Φ_0 . Then the matrix B_i in (7) is cogredient in Φ_0 to $[\beta_i, -\beta_i]$ and hence also Φ_0 to $[\beta_i, -\beta_i]$ and hence also Φ_0 to $[\beta_i, -\beta_i]$ and hence also Φ_0 to $[\beta_i, -\beta_i]$ and hence $[\beta_i, -\beta_i]$ and $[\beta_i, -\beta_i]$ are cogredient. If $[\beta_i, -\beta_i]$ are cogredient, if, and only if, $[\beta_i, -\beta_i]$ and $[\beta_i, -\beta_i]$ are cogredient in $[\beta_i, -\beta_i]$ the condition for this is that the discriminants be the same when $[\beta_i, -\beta_i]$ in finite and the signatures be the same when $[\beta_i, -\beta_i]$ in finite. Combining these results, we see that a necessary and sufficient condition that two nondegenerate hermitian forms in $[\beta_i, -\beta_i]$ over $[\beta_i, -\beta_i]$ be cogredient is that they have the same discriminant and the same signature at the infinite prime spots for which $[\beta_i, -\beta_i]$ is $[\beta_i, -\beta_i]$ and $[\beta_i, -\beta_i]$ the same signature at the infinite prime spots for which $[\beta_i, -\beta_i]$ is $[\beta_i, -\beta_i]$ and $[\beta_i, -\beta_i]$ and $[\beta_i, -\beta_i]$ is $[\beta_i, -\beta_i]$.
- (6) $\Phi_0(i,j)$, Φ_0 an algebraic number field. To obtain conditions for cogredience of $(x,y)_1$ and $(x,y)_2$ we again consider $\{x,y\}_1$ and $\{x,y\}_2$. Let p be a prime spot at which $((-\lambda, -\mu)/p) = 1$, that is, $\Phi_{0p}(i,j)$ is a matrix algebra. Then either $-\lambda$ is a square in Φ_{0p} or $-\mu$ is a norm in $\Phi_{0p}(i)$. In the first case B_i is cogredient to $[\beta_i, -\beta_i, \mu\beta_i, -\mu\beta_i]$ and hence to [1, -1, 1, -1]. If $-\mu$ is a norm in $\Phi_{0p}(i)$, the bilinear form with matrix $[\beta_i, \lambda\beta_i, \mu\beta_i]$ represents 0 and hence is cogredient to $[1, -1, -\lambda\mu\beta_i]$, and again (6) is cogredient to (8). If p is a prime spot for which $\Phi_{0p}(i,j)$ is a division algebra, $(x,y)_1$ and $(x,y)_2$ are always cogredient, if p is finite, and these forms are cogredient for p infinite, if, and only if, they have the same signatures. Thus a necessary and sufficient condition that $(x,y)_1$ and $(x,y)_2$ in \Re over Φ be cogredient is that these forms have the same signatures for all infinite prime spots for which $\Phi_{0p}(i,j)$ is a division algebra.

University of North Carolina

¹⁰ E. H. Moore, loc. cit., p. 193.

¹¹ See Witt and the references cited there to Hasse's papers.

¹² This is a consequence of Witt's theorem that any two symmetric forms in two variables which are nonsingular and represent 0 are cogredient (Witt, p. 34).

¹³ Cf. Landherr, Äquivalenz Hermitescher Formen über einem beliebigen algebraischen Zahlkörper, Abhandlungen aus dem mathematischen Seminar der Hansischen Universität, vol. 11 (1936), pp. 245-248.