
A NOTE ON HERMITIAN FORMS1 

N. JACOBSON 

In this note we effect a reduction of the theory of hermitian forms 
of two particular types (coefficients in a quadratic field or in a qua­
ternion algebra with the usual anti-automorphism) to that of quad­
ratic forms. The main theorem (§2) enables us to apply directly the 
known results on quadratic forms. This is illustrated in the discussion 
in §3 of a number of special cases. 

Let <£ be an arbitrary quasi-field of characteristic different from 2 
in which an involutorial anti-automorphism a-^â is defined. For the 
present we do not exclude the cases where <£ is commutative and 
a=a or $ is a quadratic field with a—»S as its automorphism. Sup­
pose 9Î is an ^-dimensional vector space over $ . We define a bilinear 
form (x, y) as a function of pairs of vectors with values in $ , such that 

(xx + %2, y) = Oi, y) + (x2, y), (x, yi + y2) = O, 3>i) + O, y2), 

(x, ya) = O, y)a, (xa, y) = â(x, y), 

for all x, y in 9Î and a in $ . If Xu #2, • • • , xn is a basis for 9Î and 
(jXi, xi) =aiji the matrix A = (an) is called the matrix of (x, 3O relative 
to this basis. By (1) it determines (x, y) as^i^v*??> if #=]C#*'£*' a n d 
y=^2xi7]i. If 3/1, y2, - - • , yn where y%=^jXjpji is a second basis for 9î 
where R = (pn) is nonsingular, the matrix of (x} y) relative to this 
basis is WAR. We call A and WAR cogredient. The form (x, y) is 
hermitian (skew-hermitian), if (3/, x) = (x, 3/) ((3/, x) = — (x, 3/)). This 
is equivalent to the condition A' = A (A'= —A). 

I t is readily seen that we may pass from the basis yi to the x's by a 
sequence of substitutions of the following two types : 

I. yi-*yi, (iter), yr->yr+y8d, (s^r). 
I I . yr-*yu (i^r),yr-*yTQ, (MO) . 

It follows that we may pass from a matrix to any other matrix co­
gredient to it by a sequence of transformations of the corresponding 
types : 

I. Addition of the 5th column multiplied on the right by 0 to the 
rth. together with addition of the sth row multiplied on the left by 0 
to the rth. 

II . Multiplication of the rth column on the right by 09e0 together 
with multiplication of the rth row on the left by 0. 

We showed in an earlier paper that any hermitian form or skew-

1 Presented to the Society, October 28, 1939. 
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hermitian form with â^a has a matrix in diagonal form; that is, there 
is a basis ui, u2, • • • , un for 9Î such that2 (Ui, Uj) = 0, if is^j. We call 
a basis of this type orthogonal and u, v orthogonal, if (u, v)=0. If 
(uu Ui) =j8t 7

e 0 for i S r and (m, ui) = 0 for i > r, we obtain the diagonal 
matrix 

(2) D8i, ft, • • • , ft, 0, • • • , 0] 

for our form.3 The element ft may be taken to be any nonzero element 
represented by the form, that is, any element for which a u± exists 
such that («i, Wi)=ft, ft is any element represented by (x, y) re­
stricted to the space of vectors orthogonal to #i, and so on. We note 
also that ft may be replaced by 7»ft7»-, (7* 5*0). 

The space 9Î0 generated by ur+i, ur+2, • • • , #n may be characterized 
as the totality of vectors z, such that (x, z) = 0 for all x. The space 9ti 
generated by %, 2/2, • • • , ur satisfies the condition 9t = 9to + 9ti> 
9?o H 9îi = 0. If 9Î2 is a second space of this sort, it has a basis of the 
form Ui+Zi, (i = l, • • • , r)> and hence the matrices of (x, y) in 9îi 
and in 9Î2 are cogredient. We may therefore restrict our attention to 
nondegenerate forms (9îo = 0) and shall do so in the remainder of this 
note. 

Two nondegenerate forms (x, y)i and (x, y)2 in 9Î and 9Î' respec­
tively are cogredient if there is a (1-1) correspondence x—»x' between 
9Î and 9Î' such that4 (x, y)i = (x', y')2. I t follows that 

(*', (yi + y2)0i = « y / + y 2
, ) 2 

and hence that (y i+y2) '=yi +3>2'. Similarly (ya)'=y'a and so x-~»x' 
is a linear transformation and 9Î and 9Î' have the same dimensional­
ity. If Xi, X2, • • • , xn is a basis for 9Î, then x(, #2', • • • , #n is one 
for 9Î'. The matrix of (x, 3O1 relative to the first basis is the same as 
that of (x', yr)2 relative to the second. Hence the matrices of (x, y)\ 
and (x', y')2 relative to any bases are cogredient and conversely co-
gredience of the matrices implies that of the forms. 

We shall suppose from now on that $ is either a quadratic field 
&o(i), i2=—\ and a = ao—iai for a = aQ+iai or that <!> = <3>o(̂  j) 
is a quaternion algebra in which i2= —X, j2= — /*, k=ij= —ji and 
â = a0—iai— ja2 — kaz for a = ao+iai+ja2+kaz. We suppose also that 
(x, y) is hermitian. Then (x, x) e <ï>0 and any j3 in (2) may be replaced 

2 Simple Lie algebras over afield ofcharacteristic zero, Duke Mathematical Journal, 
vol. 4 (1938), p. 542. 

8 The above notation for diagonal matrices will be used throughout this note. 
4 dl and 9$' have the same quasi-field and anti-automorphism. 
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by /3N(y), N(y) = 7 7 . Let $0' be the multiplicative group of nonzero 
elements in <3>0, $ 0 the subgroup of norms, and r ^ * o 7 * o - A d e -
terminant for any hermitian matrix A has been defined by E. H. 
Moore.6 We recall that , if a matrix B has the form (2) with r = nt then 
det £=j3ij32 • • • |8n and, if A = WBR, det 4 = JV(p) det B. Thus the 
coset of det A in T is an invariant of the class of matrices cogredient 
to A (or an invariant of the form). We shall call this coset the dis­
criminant of A (or of the form). 

9Î may be regarded as a vector space of 2n or 4w dimensions over $ 0 

and 

(3) [x, y} = ( l /2)[(*, y) + (y, *)] = (1/2) tr (*, y) 

is a symmetric form in 9Î over <£0. The symmetric form {x, y} satis­
fies the special condition 

(4) [xa, ya} = {x, y}N(a), 

whence 

{xâ, y] = {#a, yâ~xâ] = {x, ya~1}N(a) = {x, ya] . 

Hence, if â = — a, {x, xa:} = — {xa, x\ = 0. Conversely, if {#, y} is 
any symmetric bilinear form in 9Î over <£0 such that (4) holds, (x, y) 
defined by 

(5) (x, y) 

\{x,y) - (i/X){x, y i } , if $ = *o(*), 

{a?, 3;} - (t*/x){*, yi} - 0 7 M ) { * , y/} 

- (*/X|*) {*, y £ } , if $ = *o(«, i ) , 

is hermitian in 9Î over <ï>. The relation between (#, y) and {#, y} is a 
reciprocal one and {x, y} is nondegenerate if (x, y) is.6 

Evidently, if (x, y)i in 9Î over §> and (#', y')2 in 9t' over $ are co­
gredient, then {x, y }i and {x', y ' ^ are cogredient also. Suppose now 
that {x, y}i and {#', yf}% are cogredient. Then we have U\ and u{, 
such that7 (#1, «1)1= {«1, Wi}i= {#/ , u{ }2 = («i , «i )2=j8i?,é0. Let 9îi 
and 9Î/ respectively denote the spaces of vectors orthogonal to U\ 
and #1 relative to (#, y)i and (#', y')%. The space 8Î1 may also be 
characterized as the set of vectors orthogonal to ui, U\i if <& = $o(i)> 
or to uu mij Uij, uik, if $ = $o(i,j), with respect to {#, y }i. A similar 

6 General Analysis, I, American Philosophical Society Publication, Philadelphia, 
1935. 

6 We make use of the relation a~ao+iai+ja2+kai — (l/2)[tr a — (i/\) tr ai 
— 0"/M) tr aj — (k/\n) tr ak], 

7 There exists a vector u\ such that («1, u\) 7^0. Cf. Jacobson, loc. cit. 
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characterization holds for 9Î/. The matrix of {x, y}\ relative to #1, 
U\i or Uu Uii, U\j, U\k and of [xf> y'}2 relative to u{, u{i or u{, u{i, u{j, 
u{ k is 

(6) [ft, \8 i ] or \0h X0i, /u8i, XMiSi]. 

Hence it follows from a theorem of Witt8 that {x, y}i and {x ' ,y}2 are 
cogredient when restricted to 9?i and 9?/. By induction (x, y)\ and 
(#'> 3O2 are cogredient. Thus we have proved the following theorem: 

THEOREM. A necessary and sufficient condition that two hermitian 
forms (Xy y)i and (x, y)% be cogredient is that the corresponding symmetric 
forms {x} y} 1 and {xy y} 2 be cogredient. 

If Uiy U2y • • • , un is an orthogonal basis, (uiy Ui)=Piy then 
Uly U\iy U2y U^iy ' * ' , Ufly Uni Ot U\y U\i y U\j y U\k y ' ' ' , UH y Uniy Unj y Unk 

is an orthogonal basis for 9Î over $ relative to {x} y} and the corre­
sponding matrix, where Bi is as in (6), is 

(7) [BhB%,-..,Bn]. 

We consider now some special cases : 
(1) <&o(i), where $0 is a field in which every nondegenerate sym­

metric form in 5 or more variables is a null-form. Examples of such 
fields are (a) any £-adic field, (b) an algebraic function field of one 
variable over a finite constant field.9 In these cases any nondegenerate 
symmetric form in 4 or more variables represents every a 9^0 in <3?o. 
For, if {xt y) represents 0, say {uy u\ = 0, we choose v such that 
{uyv} = ]8^0 . Then {u^+vrjyU^+vrj} =rj(2(3!;+yr)),y= {vfv} and the 
equation 77(2/3^+777) =a can be solved for £, 77 in <£>0. If {%,y\ does not 
represent 0, we form the vector space of (w + 1) dimensions by adjoin­
ing z to 9t, and define {#£+377, xp+za} = {xy x}%p — arjcr. Since this 
form represents 0, we have {x, x} £2 — arj2 = 0 for 77 9e 0 since {x, x} 9e 0. 
Thus {x^rj~l

f xt~r}-1} = a. I t follows that any hermitian form in a 
space of 2 or more dimensions represents any a in $?Q. Hence we may 
choose 181 = 182= * • • =j3w-i = 1 in (2). Thus two forms are cogredient, 
if, and only if, they have the same discriminant. 

(2) 3>o(̂ \ i ) , $0 of the same type as in case (1). Here we may take 
j8 1 = . . . = j 3 n = i and hence all nondegenerate forms are cogredient. 

(3) 3>oW, *o a real closed field. Here we may suppose \ = 1 and we 
may suppose 181 = • • • = ^ = 1, i83,+1= • . . = /3 w =—l. For {xy y} we 

8 Theorie der quadratischen Formen in beliebigen Körpern, Journal für die reine 
und angewandte Mathematik, vol. 176 (1936-1937), p. 34. 

9 Witt, loc. cit., p. 40, and Albert, Quadratic null forms over a function field, Annals 
of Mathematics, (2), vol. 39 (1938), pp. 494-505. 
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obtain 2p values + 1 and (2n — 2p) values — 1 in the diagonal form. 
Since the signature is an invariant for bilinear forms it is invariant 
also for the hermitian form (#, y). 

(4) $ 0 ( i , i ) , *o a real closed field. The considerations are similar to 
case (3). We find that two nondegenerate hermitian forms are co­
gredient if and only if they have the same signatures.10 

(5) $o(i), $o an algebraic number field. As is well known, the 
symmetric forms {x, y} i and {x, y} 2 in 3Î over <ï>0 are cogredient, if, 
and only if, they are cogredient in every £-adic extension of $0 . Sup­
pose first tha t p is a prime spot such that ( —\/p) = 1, that is, —X is 
a square in the £-adic field11 $0p. Then the matrix Bi in (7) is cogredi­
ent in $0p to [ft, —j8»] and hence also12 to [l, — l ] . Thus any two 
matrices of the form (7) are cogredient. If (— \/p) = — 1 , &oP(i) is a 
quadratic field over $op. Hence {x, y} 1 and {x, y} 2 are cogredient, if, 
and only if, (x, y)\ and (x, y)% are cogredient in 9Î over $0p(i). The 
condition for this is that the discriminants be the same when pis 
finite and the signatures be the same when p is infinite. Combining 
these results, we see that a necessary and sufficient condition that 
two nondegenerate hermitian forms in dt over <£ be cogredient is that 
they have the same discriminant and the same signature at the infi­
nite prime spots for which X is positive.13 

(6) *o(^»i)> *o an algebraic number field. To obtain conditions for 
cogredience of (x, y)i and (x, 3O2 we again consider {xy y} 1 and {x9 y} 2. 
Let p be a prime spot at which ((—X, —ix)/p) = 1, that is, $oP(i, j) is 
a matrix algebra. Then either —X is a square in $0p or —/z is a norm in 
$op(i). In the first case Bi is cogredient to [ft, —ft, juft, —juft] a n d 
hence to [l , — 1, 1, — l ] . If — ju is a norm in ^opW, the bilinear form 
with matrix [ft, Xft, juft] represents 0 and hence is cogredient to 
[l , — 1, —X/ift], and again (6) is cogredient to (8). If p is a prime 
spot for which $op(iy j) is a division algebra, (x, y)i and (x, y)2 are 
always cogredient, if p is finite, and these forms are cogredient for p 
infinite, if, and only if, they have the same signatures. Thus a neces­
sary and sufficient condition that (x> y)i and (xy y)% in 9? over <£ be 
cogredient is that these forms have the same signatures for all infi­
nite prime spots for which $op(if j) is a division algebra. 
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10 E. H. Moore, loc. cit., p. 193. 
11 See Witt and the references cited there to Hasse's papers. 
12 This is a consequence of Witt's theorem that any two symmetric forms in two 

variables which are nonsingular and represent 0 are cogredient (Witt, p. 34). 
13 Cf. Landherr, Âquivalenz Hermitescher Formen Uber einem beliebigen alge-

braischen Zahlkörper, Abhandlungen aus dem mathematischen Seminar der Hansi-
schen Universitât, vol. 11 (1936), pp. 245-248. 


