A NOTE ON HERMITIAN FORMS!
N. JACOBSON

In this note we effect a reduction of the theory of hermitian forms
of two particular types (coefficients in a quadratic field or in a qua-
ternion algebra with the usual anti-automorphism) to that of quad-
ratic forms. The main theorem (§2) enables us to apply directly the
known results on quadratic forms. This is illustrated in the discussion
in §3 of a number of special cases.

Let ® be an arbitrary quasi-field of characteristic different from 2
in which an involutorial anti-automorphism a—a is defined. For the
present we do not exclude the cases where ® is commutative and
a=a or P is a quadratic field with a—a as its automorphism. Sup-
pose R is an n-dimensional vector space over . We define a bilinear
form (x, ¥) as a function of pairs of vectors with values in ®, such that

(1) (xl + X2, y) = (xly y) + (x21 y)) (x) Y1 + y2) = (x; 3’1) + (x7 yz),
(x) ya) = (x’ y)a’ (%a, 3’) = a(, )’),

for all x, ¥y in R and « in ®. If x1, %3, - - -, %, is a basis for R and
(x5, ;) = ovij, the matrix 4 = () is called the matrix of (x, y) relative
to this basis. By (1) it determines (x, y) as D _E,qim;, if x=_ x:£; and
y=me,~. If y1, ¥e, - - -, y» Where y; =Zx1~p,~,’ is a second basis for R
where R=(p;;) is nonsingular, the matrix of (x, y) relative to this
basis is R’AR. We call 4 and R’AR cogredient. The form (x, ) is
hermitian (skew-hermitian), if (y, x) = (x, y) ((y, ) = —(x, ¥)). This
is equivalent to the condition 4’=4 (A’=—A4).

It is readily seen that we may pass from the basis y; to the x’s by a
sequence of substitutions of the following two types:

I. ViV (’L;ér), yr—éyr"l—yae, (S;ﬁr).

II. yi—y;, (25%£7), y».—v.0, (640).

It follows that we may pass from a matrix to any other matrix co-
gredient to it by a sequence of transformations of the corresponding
types:

I. Addition of the sth column multiplied on the right by 6 to the
rth together with addition of the sth row multiplied on the left by 8§
to the rth.

II. Multiplication of the rth column on the right by 0 together
with multiplication of the rth row on the left by 4.

We showed in an earlier paper that any hermitian form or skew-

1 Presented to the Society, October 28, 1939,
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hermitian form with @« has a matrix in diagonal form; that is, there
is a basis w1, #g, - - - , 4, for N such that? (u,;, u;) =0, if 155, We call
a basis of this type orthogonal and #, v orthogonal, if (%, v)=0. If
(%4, u;) =B: %0 for =7 and (u;, ;) =0 for 2 >r, we obtain the diagonal
matrix

(2) [BI’B%""BMO"":O]

for our form.? The element 3; may be taken to be any nonzero element
represented by the form, that is, any element for which a u; exists
such that (%1, #1) =P, B: is any element represented by (x, v) re-
stricted to the space of vectors orthogonal to #;, and so on. We note
also that 8; may be replaced by ¥:8:v:, (v:5%0).

The space Ry generated by #rq1, %rys, - * + , %, may be characterized
as the totality of vectors z, such that (x, 2) =0 for all x. The space R;
generated by u;, us, - - -, u, satisfies the condition R=RN,+NR;,
No N R;=0. If Rz is a second space of this sort, it has a basis of the
form u;+2;, (¢=1, .-, 7), and hence the matrices of (x, ¥) in R,
and in R, are cogredient. We may therefore restrict our attention to
nondegenerate forms (o =0) and shall do so in the remainder of this
note.

Two nondegenerate forms (x, ¥); and (x, ¥)2 in R and R’ respec-
tively are cogredient if there is a (1-1) correspondence x—x’ between
R and N’ such that* (x, y)1=(x’, y")2. It follows that

(&, (314 y2))2 = (&', y{ + ¥4)2

and hence that (y;+732)’=y{ +y¢. Similarly (ya)’=y’a and so x—x’
is a linear transformation and R and R’ have the same dimensional-
ity. If %1, %, - - -, %, is a basis for R, then x/, xf, - - -, x,. is one
for R’. The matrix of (x, y); relative to the first basis is the same as
that of (x’, ¥')s relative to the second. Hence the matrices of (x, ¥);
and (x’, y’): relative to any bases are cogredient and conversely co-
gredience of the matrices implies that of the forms.

We shall suppose from now on that & is either a quadratic field
Po(¢), 2= —N\ and a=oap—io; for a=ap+ia; or that ®=Py(s, j)
is a quaternion algebra in which 2= —\, j?= —u, k=4¢j=—ji and
a=op—1tar—jog—kos for a=ag+1i0u+jor+kas. We suppose also that
(%, ¥) is hermitian. Then (x, x) ¢ ®¢ and any § in (2) may be replaced

2 Simple Lie algebras over a field of characteristic zero, Duke Mathematical Journal,
vol. 4 (1938), p. 542.

3 The above notation for diagonal matrices will be used throughout this note.
4+ R and R’ have the same quasi-field and anti-automorphism.
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by BN(v), N(v) = 'y'y Let ®¢ be the multiplicative group of nonzero
elements in &, <I>0 the subgroup of norms, and I'=%&]/ <I>0 A de-
terminant for any hermitian matrix 4 has been defined by E. H.
Moore.? We recall that, if a matrix B has the form (2) with r=#, then
det B=Bf; - - - B, and, if A=R’'BR, det A= N(p) det B. Thus the
coset of det 4 in T is an invariant of the class of matrices cogredient
to A (or an invariant of the form). We shall call this coset the dis-
criminant of 4 (or of the form).

<R may be regarded as a vector space of 27 or 4n dimensions over ®,
and

A3) {2, 9} = /2=, 9 + (3, 9] = (1/2) tr (x, 9)

is a symmetric form in R over ®,. The symmetric form {x, y} satis-
fies the special condition

4) {xa, ya} = {x:y}N(a)y

whence
{aa, y} = {=a, ya~'a} = {s, ya}N(e) = {&, ya}.

Hence, if a= —q, {x, xa} =— {xa, x} =0. Conversely, if {x, y} is
any symmetric bilinear form in R over ®, such that (4) holds, (x, ¥)
defined by

{x, y} - (i/)\){x, yi}, if &= &7),
G) (w9 ={{x v} — G/N{=, yi} — G/ =, 95}
— (k/ M)z, yk}, i ® = &4, 7),

is hermitian in % over ®. The relation between (, y) and {z, y}isa
reciprocal one and {x, y} is nondegenerate if (x, y) is.®

Evidently, if (x, ¥): in R over ® and (x’, y’)2 in R’ over P are co-
gredient, then {x, y}1and {x' ' }2 are cogredient also. Suppose now
that {x, ¥}, and {’, y’}, are cogredient. Then we have #; and %/,
such that’ (u1, #1)1= {ul, u1}1= {u{, uf }2=(u1’, uf )a=03:1#0. Let R,
and R/ respectively denote the spaces of vectors orthogonal to
and u{ relative to (x, y): and (x’; ¥')2. The space R; may also be
characterized as the set of vectors orthogonal to uy, ¢ if &=®,(c),
or to uy, s, urj, sk, if ® = ®o(4, 5), with respect to {x, y}1. A similar

5 General Analysis, I, American Philosophical Society Publication, Philadelphia,
1935.

¢ We make use of the relation a=ap+ics+jos+kas=(1/2)[tr a—(@/\) tr ai
—(i/w) tr aj—(k/Ne) tr ak).

7 There exists a vector #; such that (uy, #;) 0. Cf. Jacobson, loc. cit.
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characterization holds for ®&/. The matrix of {x, y}1 relative to u,,
1% Or Uy, Uat, U1, 1k and of {x’, y }2 relative to uf ,uf 7 or uf, ui <, u{ j,
ul kis

(6) [B1, M81] or [B1, N8y, wB1, MuBi].

Hence it follows from a theorem of Witt® that {x, y}; and {x’,y’}:are
cogredient when restricted to ®; and R{. By induction (x, ¥); and
(x’, ¥")2 are cogredient. Thus we have proved the following theorem:

THEOREM. A necessary and sufficient condition that two hermitian
forms (x, ¥)1 and (x, v)2 be cogredient is that the corresponding symmetric
forms {x, y}1and {x, y}2 be cogredient.

If wu, wus, ---, #, is an orthogonal basis, (u;, u;)=f; then
UL, Ual, Us, Ust, =+, Uny Unl OF Uy, Url, Ui, Uk, « * =y Un, Unly Unf, Uk
is an orthogonal basis for % over & relative to {x, y} and the corre-
sponding matrix, where B; is as in (6), is

(7) [Bl, B2y Tty Bn]-

We consider now some special cases:

(1) ®4(2), where By is a field in which every nondegenerate sym-
metric form in 5 or more variables is a null-form. Examples of such
fields are (a) any p-adic field, (b) an algebraic function field of one
variable over a finite constant field.? In these cases any nondegenerate
symmetric form in 4 or more variables represents every a0 in ®,.
For, if {x, y} represents 0, say {u, u} =0, we choose v such that
{u,v} =£50. Then {uE+vn,u£+vn} =9(2BE+vn),vy= {v,v} and the
equation 7(2B£4v1n) =a can be solved for &, 7 in ®,. If {x, y} does not
represent 0, we form the vector space of (#+1) dimensions by adjoin-
ing z to R, and define {x£+zn, xp+z0} = {x, x}£p—amo. Since this
form represents 0, we have {x, x} £ —an?=0for 0 since {x, x} #0.
Thus {xfn—l, xEn—l} =a. It follows that any hermitian form in a
space of 2 or more dimensions represents any a in ®,. Hence we may
choose B1=8:= - - - =B,-1=11in (2). Thus two forms are cogredient,
if, and only if, they have the same discriminant.

(2) ®o(2, 7), Py of the same type as in case (1). Here we may take

Bi= -+ =B,=1 and hence all nondegenerate forms are cogredient.
(3) ®o(2), ®o a real closed field. Here we may suppose A=1 and we
may suppose f1= -+ =8,=1,Bp1u= -+ =B,=—1. For {x, y} we

8 Theorie der gquadratischen Formen in beliebigen Kirpern, Journal fiir die reine
und angewandte Mathematik, vol. 176 (1936-1937), p. 34.

? Witt, loc. cit., p. 40, and Albert, Quadratic null forms over a function field, Annals
of Mathematics, (2), vol. 39 (1938), pp. 494-505.
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obtain 2p values 4+1 and (2#—2p) values —1 in the diagonal form.
Since the signature is an invariant for bilinear forms it is invariant
also for the hermitian form (x, y).

(4) ®o(3,7), Poa real closed field. The considerations are similar to
case (3). We find that two nondegenerate hermitian forms are co-
gredient if and only if they have the same signatures.!?

(5) ®o(2), ®o an algebraic number field. As is well known, the
symmetric forms {x, y}: and {x, y}sin R over &, are cogredient, if,
and only if, they are cogredient in every p-adic extension of ®,. Sup-
pose first that p is a prime spot such that (—\/p) =1, thatis, —\is
a square in the p-adic field!* ®(,. Then the matrix B;in (7) is cogredi-
ent in &y, to [B:;, —B:] and hence also'? to [1, —1]. Thus any two
matrices of the form (7) are cogredient. If (—=N/p)=—1, $g,(7) is a
quadratic field over ®,,. Hence {#, y},and {x, ¥}; are cogredient, if,
and only if, (x, ¥): and (x, )2 are cogredient in N over Py,(z). The
condition for this is that the discriminants be the same when pis
finite and the signatures be the same when p is infinite. Combining
these results, we see that a necessary and sufficient condition that
two nondegenerate hermitian forms in & over ® be cogredient is that
they have the same discriminant and the same signature at the infi-
nite prime spots for which X is positive.!3

(6) ®o(z, 7), Po an algebraic number field. To obtain conditions for
cogredience of (%, ¥): and (x, y): we again consider {x,y},and {x, y}a
Let p be a prime spot at which ((—N\, —u)/p) =1, that is, ®o,(3, 7) is
a matrix algebra. Then either —\ is a square in ®,, or —u is a norm in
®,,(7). In the first case B; is cogredient to [B:, —Bs, uBs, —uB:] and
hence to [1, —1,1, —1]. If —uis a norm in ®,,(4), the bilinear form
with matrix [B:, NBi, uB:] represents 0 and hence is cogredient to
[1, —1, —MuB:], and again (6) is cogredient to (8). If p is a prime
spot for which ®.,(¢, 7) is a division algebra, (x, ¥); and (x, ). are
always cogredient, if p is finite, and these forms are cogredient for p
infinite, if, and only if, they have the same signatures. Thus a neces-
sary and sufficient condition that (x, ¥); and (x, )2 in R over ® be
cogredient is that these forms have the same signatures for all infi-
nite prime spots for which ®,(4, j) is a division algebra.
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10 £ H. Moore, loc. cit., p. 193.

11 See Witt and the references cited there to Hasse'’s papers.

12 This is a consequence of Witt’s theorem that any two symmetric forms in two
variables which are nonsingular and represent 0 are cogredient (Witt, p. 34).

13 Cf. Landherr, Agquivalens Hermitescher Formen iiber einem beliebigen alge-
braischen Zahlkorper, Abhandlungen aus dem mathematischen Seminar der Hansi-
schen Universitit, vol. 11 (1936), pp. 245-248.



