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It is well known that the existence of solutions of systems of differ­
ential equations can be established under hypotheses not strong 
enough to guarantee uniqueness of the solution. The standard device 
for ensuring uniqueness is to assume that the functions involved 
satisfy a certain Lipschitz condition. Gravesf showed that, for sys­
tems consisting of a single equation, this could be replaced by a cer­
tain monotoneity requirement. In this note we shall establish a 
uniqueness theorem which contains both of these as special cases. 

We suppose that fx(x, y), • • • , fn(xy y) are functions defined for 
all x in an interval [a> b] and all points (y1, • • • , yn) of ^-space; each 
ƒ*'(#, y) is assumed continuous in y for each fixed x, and measurable 
in x for each fixed y. Under these conditions it can be shown J that 
if there exists a function S(x) summable over a^x^b such that§ 

I/(*,y) I £S(x), 

then, for each XQ in [a, b] and each point jo, there is an absolutely con­
tinuous function y(x)^(y1(x)t • • • , yn(x)) such that y(xo) =yo, and|| 

(1) y*(x) — f(%, y(x)), a ^ x ^ b, 

for almost all x. However, this solution may not be unique. If 
We therefore establish the following theorem: 

THEOREM I. Let the functions jH(x, y) be defined f or all (x, y) with 
aSx^b. Let there exist a function M{x) summable over [a, b] such that 
for all x in [a, 6], all y and all 77, the inequality 

(2) {ƒ*(*, y + v) - f(x, y) We M(x) \r,\* 

holds. Then, if yi(x) and y2(x) are absolutely continuous f unctions satis-
fying the differential equations (1) for almost all x, and for some XQ in 

* Presented to the Society, December 30, 1938. 
t L. M. Graves, The existence of an extremum in problems of Mayer, Transactions 

of this Society, vol. 39 (1936), pp. 456-471; in particular, p. 459. 
% Carathéodory, Vorlesungen iiber réelle Funktionen, p. 672. 
§ The symbol \v\ denotes the length of the vector v; thus |/| = (ƒ*ƒ*)1/2. 
II The symbol y* denotes the derivative yif(x), where that derivative exists and is 

finite; elsewhere it has the value 0. 
H Carathéodory, op. cit., p. 675. 
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[a, b] the equation yi(xo) =3^2(^0) holds, these f unctions are identical for 
xo^x^b. 

Define rj^x) = y£ (x) —y£ (x) ; then rj(xo) = 0. If our theorem is false, 
there is a number k such that x0<k^b and |rj(k)\ > 0 . Let h be the 
greatest value of x less than k for which | rj(x)\ = 0; such a number 
surely exists, since | rj(x) | is continuous and | rj(xo) | = 0. We now have 

(3) !,,(*) |=:0; U O ) | > 0 , h<x^k. 

Since the functions yi and y2 satisfy the equations (1), for almost all 
x in [a, b] the equations 

(4) î*(x) = ƒ*(*, y%) - fix, yi) = fix, yi + v) - fix, ?i) 

hold; whence, by (2), 

(5) vW ^ {f(x9 yi + v) - fix, yi)W ^ M{x) I rj|2. 

If we define \(x) =log \rj(x)\ = (log 77 V ) / 2 , this can be written (be­
cause of (3)) in the form 

(6) X(a) g Af(»), h<xg,k. 

On each interval [£, fe ] with h<%<k, the function | 77 (x) | is absolutely 
continuous and bounded from zero. Hence Mx) is also absolutely con­
tinuous on [£, k], and from (6) we obtain by integration 

ƒ h r* h 

M(x)dx ^ I I Mix) \dx, h < £ ^ jfc. 
Thus X(£) is bounded below on the interval h<%^k. But this is a 
contradiction; for, as x approaches h from the right, \t)ix)\ ap­
proaches 0, and \(x)=log \yix)\ approaches —00. Our theorem is 
therefore established. 

COROLLARY. Let the functions ƒ*(#, y) be defined for all (x, y) with 
a^x^b. Let yi(x) and y2(x) be absolutely continuous f unctions satisfy­
ing equations (1) and coinciding at a point XQ of the interval [a, b]. Let 
any one of the following five conditions be satisfied. 

(i) To each point (#0, yo) with aSx^b there corresponds a positive 
number e and a function Mix), summable over an interval [a, j8] having 
a<#o<j3 , such that 

(7) {fix9 y + y)- fix, y)W ^ Mix) \r,\>, 

whenever a^x^P and \rj\ <e . 
(ii) The same condition as (i) with (7) replaced by 

(8) - {fix, y + v)- fix, y)W^ Mix) \y\*. 
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(iii) The same as (i) with (7) replaced by 

(9) | {f(x, y + v)~ ƒ*(*, y)W\£ M(x) | v\K 

(iv)* The same as (i) with (7) replaced by 

(io) l M ? + * ) -My) l ^^(*)U|. 
(v)f w = l, and f (x y y) is a monotonie decreasing f unction of y for 

each fixed x. 
Then the identity yi(x) =y2(x) holds on the corresponding intervals: 
(i): xQ^x^b; (iii), (iv): a^x^b; 

(ii): a^x^Xo; (v): x 0 ^ ^ ^ 5 . 

The proof of (i) is essentially that of Theorem 1. We need only 
observe that , having found the [a, j8] and the e belonging to the point 
(h, y(h)), we can reduce k, if necessary, so that [h, k]c [a, /3] and 
\rj(x)\ < e if h^xSk. Part (ii) can be established analogously. More 
simply, it can be obtained from (i) by the transformation x= — x. 
Part (iii) follows by applying (i) to the interval xo^x^b and (ii) to 
the interval a^x^x0. If condition (iv) holds, then, by the Cauchy-
Schwarz inequality, 

I {ƒ*(*,? + *) -ƒ*(*, y)W\ S\f(x,y + v) - M y ) | • Ul 

^(*)M !; 
so (iv) is a special case of (iii). For (v), we observe that f(x, y+rj) 
—f(%t y) cannot have the same sign as rj; so the inequality 

{f(x,y + v)-fK*,y)h£M(%)\n\* 

holds with M(x) = 0 . Hence (v) is a special case of (i). 
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* Carathéodory, op. cit., pp. 673-674. 
t Graves, loc. cit. 


