ON THE UNIQUENESS OF THE SOLUTIONS OF
DIFFERENTIAL EQUATIONS*

E. J. McSHANE

It is well known that the existence of solutions of systems of differ-
ential equations can be established under hypotheses not strong
enough to guarantee uniqueness of the solution. The standard device
for ensuring uniqueness is to assume that the functions involved
satisfy a certain Lipschitz condition. Gravest showed that, for sys-
tems consisting of a single equation, this could be replaced by a cer-
tain monotoneity requirement. In this note we shall establish a
uniqueness theorem which contains both of these as special cases.

We suppose that fi(x, ), - - -, f*(x, y) are functions defined for
all x in an interval [a, ] and all points (!, - - - , ¥*) of n-space; each
fi(x, v) is assumed continuous in y for each fixed x, and measurable
in x for each fixed y. Under these conditions it can be shown} that
if there exists a function S(x) summable over ¢ £x<b such that§

| f(x, 3)| = S(a),

then, for each %o in [a, b] and each point y,, there is an absolutely con-
tinuous function y(x) = (y1(x), - - -, ¥"(x)) such that y(xo) =v,, and||

(1 yi(x) = fi(=, y(x)), asx=b,

for almost all x. However, this solution may not be unique.
We therefore establish the following theorem:

THEOREM 1. Let the functions fi(x, v) be defined for all (x, v) with
a <x=b. Let there exist a function M (x) summable over [a, b] such that
for all x in [a, b], all y and all 4, the inequality

(2) {Fi(x, y +n) — filx, 9)}n* < M(a)|n?

holds. Then, if y1(x) and ys(x) are absolutely continuous funcitons saiis-
fying the differential equations (1) for almost all x, and for some x, in

* Presented to the Society, December 30, 1938.

1 L. M. Graves, The existence of an extremum in problems of Mayer, Transactions
of this Society, vol. 39 (1936), pp. 456-471; in particular, p. 459.

1 Carathéodory, Vorlesungen iber reelle Funktionen, p. 672.

§ The symbol |v| denotes the length of the vector ; thus | f| = (fifé)1/2.

” The symbol §* denotes the derivative y*’(x), where that derivative exists and is
finite; elsewhere it has the value 0.

94 Carathéodory, op. cit., p. 675.

755



756 E. J. McSHANE [October

[a, b] the equation yi(xe) =y2(x0) holds, these functions are identical for
Xo é X é b.

Define 7i(x) =4 (x) — i (x); then 5(xe) =0. If our theorem is false,
there is a number % such that xo<k=<b and |7(k)| >0. Let % be the
greatest value of x less than % for which |n(x)| =0; such a number
surely exists, since | 7(x)| is continuous and | 7(xo)| =0. We now have

3) | n(h)| = 0; | n(®)| >0, h<ax= k.
Since the functions y; and v, satisfy the equations (1), for almost all

xin [a, b] the equations

@) @) = fi=x, y2) — fi(x, y1) = fi(x, 31+ 1) — fiw, 1)

hold; whence, by (2),

() it < {7z, 31+ ) = fils, ) }ni < M) |02

If we define \(x) =log In(x)l = (log 7n%)/2, this can be written (be-

cause of (3)) in the form

(6) Mx) < M(a), h< xS k.

On each interval [, k] with & < £ <E, the function | n(x) l is absolutely
continuous and bounded from zero. Hence N\ (x) is also absolutely con-
tinuous on [£, k], and from (6) we obtain by integration

AE) — M©) §ko(x)dx§fb|M(x)|dx, h<ES k.
¢ a

Thus N(§) is bounded below on the interval 2 <£<k. But this is a
contradiction; for, as x approaches % from the right, ln(x)l ap-
proaches 0, and A(x) =log [n(x)[ approaches — o, Our theoremis
therefore established.

COROLLARY. Let the functions fi(x, y) be defined for all (x, v) with
a=<x=b. Let y1(x) and y.(x) be absolutely continuous functions satisfy-
ing equations (1) and coinciding at a point xo of the interval [a, b). Let
any one of the following five conditions be satisfied.

(i) To each point (xo, yo) with a =x =b there corresponds a positive
number € and a function M(x), summable over an interval [, 8] having
a<x9<B, such that

) {fi(x, y + 1) — filx, ) }n* < M(x) [ ]2,

whenever a <x < and | 4| <e.
(ii) The same condition as (i) with (7) replaced by

(8) — {fi(x, y + ) — filx, y) }n' < M(x)| 0]t
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(iii) The same as (i) with (7) replaced by

©) | {fi(x, 3 +m) = fi(m, D }of| < M@) [ ]2,
(iv)* The same as (i) with (7) replaced by
(10) | £, 3 + 1) = fl&, )| = M) [ n].

V)T n=1, and fl (x, y) is @ monotonic decreasing function of vy for
each fixed x.

Then the identity y1(x) =v2(x) holds on the corresponding intervals:

(i): o=x=b; @iii), (iv): a<x<b;

(ii): e =x=x0; (v): xg=x=b.

The proof of (i) is essentially that of Theorem 1. We need only
observe that, having found the [«, 8] and the e belonging to the point
(h, y(h)), we can reduce k, if necessary, so that [, k] ¢ [a, 8] and
[n(x)l <eif h=x=<k. Part (ii) can be established analogously. More
simply, it can be obtained from (i) by the transformation %= —x.
Part (iii) follows by applying (i) to the interval x,<x=b and (ii) to
the interval ¢ <x <x,. If condition (iv) holds, then, by the Cauchy-
Schwarz inequality,

| {7iCx, y 4+ n) — filo, ) }ni| < |1, 3 4+ 1) — f(x, 9)| - [ 0]
< M%) |13

so (iv) is a special case of (iii). For (v), we observe that fi(x, y+1)
—fY(x, v) cannot have the same sign as 7; so the inequality

{11, y 4 0) — fi=, )0 < M(x) |02
holds with M (x) =0. Hence (v) is a special case of (i).
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* Carathéodory, op. cit., pp. 673-674.
t Graves, loc. cit.



