A THEOREM ON MATRICES OVER A COMMUTATIVE RING
NEAL H. McCOY

1. Introduction. Let R be an arbitrary commutative ring with unit
element 1, and R[\] the ring of polynomials in the indeterminate X\,
with coefficients in R. If 4 is a matrix of order #, with elements in R,
the set of all elements g(A\) of R[\], such that g(4)=0, is an ideal
which we shall call the minimum ideal of A. The element fA) = |\ — 4|
of R[\] is the characteristic function of A, and the principal ideal
(f(\)) may be called the characteristic ideal of A.* In a recent note, T
it was shown that the minimum ideal of a matrix can be character-
ized in a manner generalizing Frobenius’ characterization of the mini-
mum function of a matrix for the case in which the coefficient domain
is a field.{ It was also shown that, in R[\], the prime ideal divisors
of the minimum ideal coincide with those of the characteristic ideal.
If R is specialized to be an algebraically closed field, this result yields
the familiar theorem to the effect that the distinct linear factors of
the characteristic function of 4 coincide with the distinct linear fac-
tors of the minimum function of 4. It is the primary purpose of the
present note to generalize, in a similar way, the well known theorem
of Frobenius concerning the characteristic roots of a polynomial in
two or more commutative matrices—or, more precisely, an extension
of this theorem which we shall now describe in some detail.

Let K denote an algebraically closed field, and let us say that
the matrices 4, (¢=1, 2, - - -, m), with elements in K, have prop-
erty P, if the characteristic roots of every scalar polynomial
f(41, As, -+, An), with coefficients in K, are all of the form
TS\, N2, - - -, N\») where\;isa characteristicrootof 4;, (4=1,2, - - - ,m).

In a previous paper,§ the following statements were shown to be
equivalent:

I. The matrices 4;, (=1, 2, - - -, m), have property P.

* The terms minimum ideal and characteristic ideal are used merely to emphasize
that they generalize the usual notions of minimum and characteristic functions, re-
spectively.

t Neal H. McCoy, Concerning mairices with elements in a commutative ring, this
Bulletin, vol. 45 (1939), pp. 280-284.

1 For the classical theorems concerning the characteristic and minimum func-
tions and related topics, see C. C. MacDuffee, The Theory of Matrices, chap. 2, or
J. H. M. Wedderburn, Lectures on Matrices, chap. 2.

§ N. H. McCoy, On the characteristic roots of mairic polynomials, this Bulletin,
vol. 42 (1936), pp. 592-600. Hereafter this will be referred to as M.
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II. All matrices 4;4;—A;A:, (4,7=1,2, - ., m), are contained in
the radical of the algebra of polynomials in the A's with coefficients
in K.*

If the matrices 4; are commutative in pairs, clearly condition II
is satisfied, and thus I is true. Hence Frobenius’ theorem, which states
that a set of commutative matrices always has property P, is a special
case of the equivalence of I and II. Other interesting special cases of
the general result stated above, or examples of matrices having prop-
erty P, have been obtained by Bruton, Ingraham, Roth, and Wil-
liamson.

If now the matrices 44, (=1, 2, - - - , m), have elements in an arbi-
trary commutative ring R with unit element, it is obvious that the
above definition of property P no longer has any meaning. However,
we shall give below a suitable definition of property P which is equiv-
alent to the above, if R is specialized to be an algebraically closed
field. The principal result of the present note is then a proof of the
equivalence of I and II in this generalized sense.

2. Preliminary remarks and notation. We first recall a few proper-
ties of ideals which will be of importance in the sequel.l If a is an
ideal in the commutative ring R, the set of all elements of R, of which
some finite power belongs to a, is an ideal called the radical of a. The
radical of R is the radical of the null ideal, that is, the set of all nil-
potent elements. Clearly a and its radical have the same prime ideal
divisors. A minimal prime ideal divisor of a is one containing§ no
other prime ideal divisor of a. Each ideal a has minimal prime ideal
divisors, and the radical of a is the intersection of all minimal prime
ideal divisors of a. Each prime ideal divisor of a contains at least one
minimal prime ideal divisor, so that, in fact, the radical of a is the
intersection of all prime ideal divisors of a.

Henceforth R will denote an arbitrary commutative ring with

* In other words, this may be described as follows, using the notation of the pres-
ent paper. If S is the ring of polynomials in the 4’s over the ring R, and 8 denotes the
two-sided ideal in S generated by all elements 4;4;—A4;4;, then II states that all
elements of 8 are nilpotent.

1 G. S. Bruton, Certain aspects of the theory of equations for a pair of matrices, this
Bulletin, abstract 38-9-196; M. H. Ingraham, 4 study of certain related pairs of square
matrices, ibid., abstract 38-9-197; W. E. Roth, On the characteristic values of the matrix
f(4, B), Transactions of this Society, vol. 39 (1936), pp. 234-243; J. Williamson,
The simultaneous reduction of two matrices to triangle form, American Journal of
Mathematics, vol. 57 (1935), pp. 281-293.

I For definitions and fundamental theorems, see W. Krull, Idealtheorie, particularly
p. 9.

§ In the set-theoretic sense.
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unit element, and 4;, (¢=1, 2, - - -, m), fixed matrices of order »
with elements in R. Let R, denote the ring of all matrices of order
n over R, and S the subring of R, generated by the elements 4,

(t=1, 2, - -, m), together with the unit element of R,.* We shall
denote by 8 the two-sided ideal in S generated by the elements
Aij=A4:4,—A;A; (3, j=1,2, -, m). Each element of 8 is, there-

fore, expressible as a finite sum of terms of the form g4 4, where g
and % are elements of S.

If y is any element of S, let § be the corresponding element of the
ring S/8 under the homomorphic correspondence S—S5/8. We now

introduce the ring R’=R[x1, %, - - - , %] of polynomials in the com-
mutative indeterminates xi, %2, * - -, ¥m over R. To each polynomial
g(A)=g(4,, A, - - -, An) in the 4’s we may, therefore, make corre-
spond the element g(x) =g(x1, %2, - -, xm) of R’, obtained by formally
replacing 4; by x;, (¢1=1,2, - - - , m).t For example, if g(4) =4.4.41,

then g(x) =x2x,. Since 4;4;=4;4; (8), it follows that multiplication
is commutative in .S/8. Thus the correspondence

f(x) = Z diliZ"'imx;lxéz T x:"m—) Z diu‘z"'l'mzlil‘?;-;2 v x—‘f::,”,
which we may abbreviate in the form f(x)—f(4), is a homomorphism
between R’ and .S/8, and thus

S/8~ R'/m,

where m is the ideal in R’ of all elements f(x) such that f(4)=0.
Clearly, m contains the minimum ideal of each of the individual mat-
rices 44, (2=1,2, - - -, m).

Let p,f denote an arbitrary minimal prime ideal divisor of m, and t
the radical of m, so that r is the intersection of all p,. With each p,
we may associate, by means of a given polynomial f(4), a prime ideal
p; in R[\], whose elements are the polynomials #(\), such that
t[f(x)]=0 (p.). For convenience, we may indicate the intersection
of all p,/ by f. We remark that 4 [f(x) |=0 (x), if and only if Z(\) =0 (f).

* Elements of S are, therefore, expressible as polynomials in the 4;, that is, as
finite sums of terms of the form a4; 4, - - - A4, where a is in R and each 4, is some
one of the matrices 41, 4, * * +, 4. It may happen that no 4; appears in a term, in
which case the term will be simply of the form a, as we shall not distinguish between
the unit element of R and the unit element of R..

t This use of the symbols “4” and “x” will cause no confusion, as they do not
appear without subscripts in any other connection. However, N will always denote a
single indeterminate.

1 The use of a subscript is not meant to imply that the number of minimal prime
ideal divisors is finite or even enumerable. The range of & may be an arbitrary set.
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Let n be the minimum ideal of the matrix f(4), that is, the set of
all polynomials g(\) such that g[f(4)]=0. We now make the follow-
ing definition:

DEFINITION. The matrices A;, (¢=1,2, - - -, m), with elements in R
are said to have property P, if for every polynomial f(A), the radical of n
s §.

Before proceeding, we pause to point out briefly the meaning of
property P, if R is specialized to be an algebraically closed field. Let
f(4) be a given polynomial in the 4,. Since m contains the character-
istic function g;(x;) of 4;, (j=1, 2, - -, m), it follows* that each
prime ideal divisor of m is necessarily of the form

Pa = (%1 — )\1(0‘), %o — %ga), Ce ey B — >\,(:>),
where @ is a characteristicrootof 4;, (=1, 2, - - - , m), and further
that each y, is minimal. By a Taylor’s series expansion we see at once
that

pd = = f07 N, ),

and that the prime ideal divisors of f are precisely these p/. Now the
prime ideal divisors of n are of the form N —a;, where a; varies over
the distinct characteristic roots of f(4). Thus, if the given matrices
have property P according to the definition above, the radical of
n is f and, therefore, the prime ideal divisors of n coincide with the
prime ideal divisors of f. This means that the characteristic roots of
f(A41, Ag, - - -, An) are all of the form fA@, N, -« - | N®), and
thus that the matrices have property P as defined in the introduction.
Conversely, it is not difficult to show,} although we shall omit the
proof, that if the matrices have property P as defined in the introduc-
tion, they also have property P as defined here. Thus, if R is an alge-
braically closed field, the two definitions are equivalent.

3. The main theorem. We now prove the following theorem which
is the principal result of this note:

THEOREM. Let A;, (i=1, 2, - - -, m), be mairices of order n with ele-
ments in an arbitrary commutative ring R with unit element, and denote
by S the ring of polynomials in the A; with coefficients in R. If 8
is the two-sided ideal in S gemerated by the matrices A;A;—A;A;,

* For theorems on polynomial ideals see van der Waerden, Moderne Algebra,
vol. 2.
t Cf. M, pp. 598-599.
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(¢, j=1,2, - -, m), then a necessary and sufficient condition that the
given matrices have property P is that all elements of 8 be nilpotent.

First, we assume that all elements of 8 are nilpotent. If f(4) is an
arbitrary polynomial in the 4, we shall show that f is the radical of n.
Let g(\) be any element of f. Then it follows that g[f(x)]=0 (r),
where t is the radical of m. Thus, for some positive integer k,
{g[f(x)]}¥=0 (m). This means, however, that {g[f(4)]}*=0 (8),
and, since all elements of 8 are nilpotent, there exists a positive integer
I such that {g[f(4)]}¥=0. This implies that [g\)]¥*=0 (n), that
is, that g(\) is in the radical of n. Thus f is contained in the radical of
n.

Now let Z(\) be an arbitrary element of the radical of u, that is,
[2(\)]2=0 (n), for some positive integer a. Then {k[f(4)]}==0,
from which it tollows that {A[f(4)]}+=0, and thus that

{R[f&)]}==0 (m).

This means that A[f(x)]=0 (r), and this, in turn, implies that
E(\)=0 (f). We have therefore shown that if all elements of 8 are
nilpotent, the radical of n is f.

Conversely, let us now assume that for every polynomial f(4), the
radical of n is f. Select any element of 8 and write it, in any way, in
the form ot a sum of terms

F(A)(A:d; — A4,;4)G(4),

and denote by f(4) the polynomial thus obtained. Then, clearly,
f(x) =0, and thus f(x)=0 (t). Hence A=0 () and therefore, by hy-
pothesis, there exists a positive integer 8 such that M¥=0 (n). It fol-
lows that [f(4)]6=0, and thus that f(4) is nilpotent. The theorem
is therefore established.
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