
A THEOREM ON MATRICES OVER A COMMUTATIVE RING 

NEAL H. McCOY 

1. Introduction. Let R be an arbitrary commutative ring with unit 
element 1, and R\\] the ring of polynomials in the indeterminate X, 
with coefficients in R. If A is a matrix of order n, with elements in R, 
the set of all elements g(X) of i?[X], such that g(A)=0, is an ideal 
which we shall call the minimum ideal of A. The element ƒ (X) = | X —A \ 
of R\\] is the characteristic function of A, and the principal ideal 
(/(X)) may be called the characteristic ideal of A.* In a recent note,f 
it was shown that the minimum ideal of a matrix can be character­
ized in a manner generalizing Frobenius' characterization of the mini­
mum function of a matrix for the case in which the coefficient domain 
is a field.J It was also shown that, in i£[X], the prime ideal divisors 
of the minimum ideal coincide with those of the characteristic ideal. 
If R is specialized to be an algebraically closed field, this result yields 
the familiar theorem to the effect that the distinct linear factors of 
the characteristic function of A coincide with the distinct linear fac­
tors of the minimum function of A. It is the primary purpose of the 
present note to generalize, in a similar way, the well known theorem 
of Frobenius concerning the characteristic roots of a polynomial in 
two or more commutative matrices—or, more precisely, an extension 
of this theorem which we shall now describe in some detail. 

Let K denote an algebraically closed field, and let us say that 
the matrices Ai, (i = l, 2, • • • , m), with elements in K, have prop­
erty P , if the characteristic roots of every scalar polynomial 
f (A i, A%, • • • , Am), with coefficients in K, are all of the form 
/(Xi,X2, • • • ,X«) where X* is a characteristic root of A *, (i = l, 2, • • - ,m). 

In a previous paper, § the following statements were shown to be 
equivalent : 

I. The matrices Ai, (i = l, 2, • • • , m), have property P. 

* The terms minimum ideal and characteristic ideal are used merely to emphasize 
that they generalize the usual notions of minimum and characteristic functions, re­
spectively. 

t Neal H. McCoy, Concerning matrices with elements in a commutative ring, this 
Bulletin, vol. 45 (1939), pp. 280-284. 

% For the classical theorems concerning the characteristic and minimum func­
tions and related topics, see C. C. MacDuffee, The Theory of Matrices, chap. 2, or 
J. H. M. Wedderburn, Lectures on Matrices, chap. 2. 

§ N. H. McCoy, On the characteristic roots of matric polynomials, this Bulletin, 
vol. 42 (1936), pp. 592-600. Hereafter this will be referred to as M. 
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II . All matrices AiAj—AjAi, (i,j = l, 2, • • • , m), are contained in 
the radical of the algebra of polynomials in the ^4's with coefficients 
iniT.* 

If the matrices Ai are commutative in pairs, clearly condition II 
is satisfied, and thus I is true. Hence Frobenius , theorem, which states 
that a set of commutative matrices always has property P , is a special 
case of the equivalence of I and II. Other interesting special cases of 
the general result stated above, or examples of matrices having prop­
erty P , have been obtained by Bruton, Ingraham, Roth, and Wil­
liamson, f 

If now the matrices A t-, (i = 1, 2, • • • , m), have elements in an arbi­
trary commutative ring R with unit element, it is obvious that the 
above definition of property P no longer has any meaning. However, 
we shall give below a suitable definition of property P which is equiv­
alent to the above, if R is specialized to be an algebraically closed 
field. The principal result of the present note is then a proof of the 
equivalence of I and II in this generalized sense. 

2. Preliminary remarks and notation. We first recall a few proper­
ties of ideals which will be of importance in the sequel. J If a is an 
ideal in the commutative ring R, the set of all elements of P , of which 
some finite power belongs to a, is an ideal called the radical of a. The 
radical of R is the radical of the null ideal, that is, the set of all nil-
potent elements. Clearly a and its radical have the same prime ideal 
divisors. A minimal prime ideal divisor of a is one containing § no 
other prime ideal divisor of a. Each ideal a has minimal prime ideal 
divisors, and the radical of a is the intersection of all minimal prime 
ideal divisors of a. Each prime ideal divisor of a contains at least one 
minimal prime ideal divisor, so that, in fact, the radical of a is the 
intersection of all prime ideal divisors of a. 

Henceforth P will denote an arbitrary commutative ring with 

* In other words, this may be described as follows, using the notation of the pres­
ent paper. If 5 is the ring of polynomials in the A's over the ring R, and 3 denotes the 
two-sided ideal in S generated by all elements AiAj — AjAi, then II states that all 
elements of # are nilpotent. 

f G. S. Bruton, Certain aspects of the theory of equations for a pair of matrices, this 
Bulletin, abstract 38-9-196; M. H. Ingraham, A study of certain related pairs of square 
matrices, ibid., abstract 38-9-197; W. E. Roth, On the characteristic values of the matrix 
f(A, B), Transactions of this Society, vol. 39 (1936), pp. 234-243; J. Williamson, 
The simultaneous reduction of two matrices to triangle form, American Journal of 
Mathematics, vol. 57 (1935), pp. 281-293. 

| For definitions and fundamental theorems, see W. Krull, Idealtheorie, particularly 
p. 9. 

§ In the set-theoretic sense. 
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unit element, and Ai, (i= 1, 2, • • • , m), fixed matrices of order n 
with elements in R. Let Rn denote the ring of all matrices of order 
n over R, and S the subring of Rn generated by the elements Ai, 
(i = l, 2, • • • , m), together with the unit element of i?n.* We shall 
denote by $ the two-sided ideal in 5 generated by the elements 
Aij = AiAj—AjAi, (i,j = l, 2, • • • , m). Each element of 3 is, there­
fore, expressible as a finite sum of terms of the form gAijh, where g 
and h are elements of S. 

If y is any element of S, let y be the corresponding element of the 
ring S/& under the homomorphic correspondence S—>S/%. We now 
introduce the ring R' = R [xi, 

%2i > Xm ] of polynomials in the com­
mutative indeterminates x\, X2, • • • , xm over R. To each polynomial 
g(A) =g(A\, Ai, • - • , Am) in the ^4's we may, therefore, make corre­
spond the element g(x) — g{x\, x2, • • • , xm) of R', obtained by formally 
replacing Ai by Xi, (i = 1, 2, • • • , m).f For example, if g(A) =A\AiA\, 
then g{x) =Xi2x2. Since AiAj^AjAi ($), it follows that multiplication 
is commutative in S/$. Thus the correspondence 

J\X) — / j dii%2' - 'imX\ %2 ' ' Xm > 2i^ ^Ht's • • ' t m - ^ l A 2 ' ' ' A.m y 

which we may abbreviate in the form f(x)—>f(A), is a homomorphism 
between R' and 5/3, and thus 

S/Q**R'/m, 

where m is the ideal in R' of all elements f(x) such that / (^4)=0. 
Clearly, m contains the minimum ideal of each of the individual mat­
rices^», (i = l, 2, • • • , m). 

Let p«$ denote an arbitrary minimal prime ideal divisor of m, and r 
the radical of m, so that r is the intersection of all p«. With each p« 
we may associate, by means of a given po lynomia l / ^ ) , a prime ideal 
p«' in i?[X], whose elements are the polynomials t(h), such that 
/ [ / ( x ) ] = 0 (pa). For convenience, we may indicate the intersection 
of all pa' by Ï. We remark that h [ƒ(*) ] = 0 (r), if and only if A(X) = 0 (Ï). 

* Elements of 5 are, therefore, expressible as polynomials in the Ai, that is, as 
finite sums of terms of the form aAixAi2 • • • Aik, where a is in R and each Ai- is some 
one of the matrices A\, A2, • • • , Am. It may happen that no Ai appears in a term, in 
which case the term will be simply of the form a, as we shall not distinguish between 
the unit element of R and the unit element of Rn. 

t This use of the symbols UA " and ttxn will cause no confusion, as they do not 
appear without subscripts in any other connection. However, X will always denote a 
single indeterminate. 

t The use of a subscript is not meant to imply that the number of minimal prime 
ideal divisors is finite or even enumerable. The range of a may be an arbitrary set. 



1939] MATRICES OVER A COMMUTATIVE RING 743 

Let n be the minimum ideal of the matrix ƒ (^4), that is, the set of 
all polynomials g(X) such that g[ /04)] = 0 . We now make the follow­
ing definition: 

DEFINITION. The matrices Ai, {i — 1, 2, • • • , m), with elements in R 
are said to have property P, if f or every polynomial f {A), the radical of n 
is Ï. 

Before proceeding, we pause to point out briefly the meaning of 
property P , if R is specialized to be an algebraically closed field. Let 
f {A) be a given polynomial in the Ai. Since m contains the character­
istic function gj(x3) of A3, ( i = l , 2, • • • , m), it follows* that each 
prime ideal divisor of m is necessarily of the form 

_ ( \ ( a ) \ ( a ) \ (a)\ 

where X/a) is a characteristic root of Aj, (j — 1, 2, • • • , m), and further 
that each pa is minimal. By a Taylor's series expansion we see at once 
that 

t , . , - ( « ) ( « ) ( « ) x 

Pa — (A — / ( A i , A2 , • • • , Km ) , 

and that the prime ideal divisors of t are precisely these p« . Now the 
prime ideal divisors of n are of the form X —a3, where a3- varies over 
the distinct characteristic roots of ƒ (A). Thus, if the given matrices 
have property P according to the definition above, the radical of 
n is ï and, therefore, the prime ideal divisors of n coincide with the 
prime ideal divisors of ï. This means that the characteristic roots of 
f(Ai, A2, • • • , Am) are all of the form/(Xi<«>, X2

(a), • • • , Xw<a>), and 
thus that the matrices have property P as defined in the introduction. 
Conversely, it is not difficult to show,f although we shall omit the 
proof, that if the matrices have property P as defined in the introduc­
tion, they also have property P as defined here. Thus, if R is an alge­
braically closed field, the two definitions are equivalent. 

3. The main theorem. We now prove the following theorem which 
is the principal result of this note : 

THEOREM. Let Ai, (i = 1, 2, • • • , m), be matrices of order n with ele­
ments in an arbitrary commutative ring R with unit element, and denote 
by S the ring of polynomials in the Ai with coefficients in R. If & 
is the two-sided ideal in S generated by the matrices AiAj—AjAi, 

* For theorems on polynomial ideals see van der Waerden, Moderne Algebra, 
vol. 2. 

t Cf. M, pp. 598-599. 
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(i, i = l, 2, • • • , rn), then a necessary and sufficient condition that the 
given matrices have property P is that all elements of 3 be nilpotent. 

First, we assume that all elements of $ are nilpotent. If ƒ(^4) is an 
arbitrary polynomial in the A i} we shall show that f is the radical of n. 
Let g(X) be any element of Ï. Then it follows that g[f(x)]=0 (r), 
where r is the radical of m. Thus, for some positive integer k, 
{g\f(x)]}k = 0 (m)- This means, however, that {g[f(A)]}k = 0 (S), 
and, since all elements of $ are nilpotent, there exists a positive integer 
/ such that {g[f(A)]}kl = 0. This implies that k(X)]*^0 (n), that 
is, that g(k) is in the radical of n. Thus I is contained in the radical of 
n. 

Now let h(X) be an arbitrary element of the radical of n, that is, 
[&(X)]a = 0 (n), for some positive integer a. Then {h[f(A)]}a = Qy 

from which it lollows that {h [f(Â) ]} a = 0, and thus that 

{*[ƒ(*)]}«»(> (m). 

This means that h[f(x)]=Q (r), and this, in turn, implies that 
&(X)=0 (f). We have therefore shown that if all elements of 3 are 
nilpotent, the radical of n is f. 

Conversely, let us now assume that for every polynomial ƒ (^4), the 
radical of n is Ï. Select any element of 3 and write it, in any way, in 
the form ot a sum of terms 

FWiAiAj- AiA%)G{A), 

and denote by f (A) the polynomial thus obtained. Then, clearly, 
f(x)=0, and thus ƒ(#)=() (r). Hence X = 0 (Ï) and therefore, by hy­
pothesis, there exists a positive integer /3 such that X ^ O (n). It fol­
lows that [/(^4)]/3 = 0, and thus that f (A) is nilpotent. The theorem 
is therefore established. 
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