
CONCERNING CERTAIN LINEAR ABSTRACT SPACES 
AND SIMPLE CONTINUOUS CURVES* 

F. B. JONES 

The first section of this paper is given over mainly to the investiga­
tion of linear Hausdorff spaces. However, the principal object of the 
paper is to characterize topologically that class of point sets used in 
the geometry for lines, namely, the class of simple continuous curves. 
This has already been done by R. L. Moore,f by R. L. Wilder, | and 
by myself.§ The results of this paper generalize the results just re­
ferred to mainly by omitting all compactness requirements. As a mat­
ter of fact, it will be shown that any nondegenerate linear continuum 
lying in a Moore space is a simple continuous curve, and that any 
nondegenerate linear connected subset of a Moore space is homeo-
morphic with a simple continuous curve. 

1. Certain results for Hausdorff spaces. 

DEFINITION. A space is said to be strongly regular at a point P pro-
vided that, if R is a region containing P , then there exists in R a domain 
D containing P whose boundary is a subset of the sum of a finite num­
ber of continua lying in R — D.\\ A space is said to be strongly regular 
provided that it is strongly regular at every one of its points. 

THEOREM 1. If P is a point of a connected Hausdorff space M and 
M is strongly regular at P, then M is connected im kleinen at P. 

PROOF. Let R denote a region containing P , and let P i denote a 
region containing P which lies together with its boundary in P . There 
exists in P i a domain D containing P whose boundary is a subset of 
the sum of a finite number of continua Th T2, • • • , Tn lying in 

* Presented to the Society, December 30, 1938, under the title Concerning simple 
linear Moore spaces and simple continuous curves. 

f R. L. Moore, Concerning simple continuous curves, Transactions of this Society, 
vol. 21 (1920), pp. 313-320. Also R. L. Moore's Foundations of Point Set Theory, 
American Mathematical Society Colloquium Publications, vol. 13, New York, 1932; 
Theorem 20' of chapter 2 in particular. Hereinafter, this book will be referred to as 
Foundations. 

% R. L. Wilder, Concerning simple continuous curves and related point sets, American 
Journal of Mathematics, vol. 53 (1931), pp. 39-55. 

§ F. B. Jones, Concerning the boundary of a complementary domain of a continuous 
curve, this Bulletin, vol. 45 (1939), pp. 428-435. 

|| See Axiom 5*i of my paper Concerning certain topologically fiat spaces, Transac­
tions of this Society, vol. 42 (1937), pp. 53-93. 
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Ri — D. Since M is connected, D + T1+T2+ • • • +Tn is the sum of 
at most n components. Hence, if C denotes the component containing 
P , C-D is an open set. But, since C lies in R, M is connected im 
kleinen at P . 

THEOREM 2. A strongly regular connected Hausdorff space is locally 
connected. 

DEFINITION. A point set M is linear provided that, if P is a point 
of R, a domain with respect to M, there exists in R a domain with respect 
to M which contains P and has at most two boundary points with re­
spect to M 4 

THEOREM 3. A linear Hausdorff space is regular. 

PROOF. If P is a point of a region P , there exists in R a domain D 
which contains P and has at most two boundary points A\ and A2. 
For each i, (i = 1, 2), let Ri denote a region containing P , such that Ri 
does not contain Ai. Then there exists a region U containing P and 
lying in DRi-R2. Obviously U is a subset of D and, hence, of R. 

THEOREM 4. If P is a point of a region R in a connected linear 
Hausdorff space, there exists a connected domain D containing P which 
has at most two boundary points such that D is a subset of R. 

PROOF. By Theorem 3, there exists a region U which contains P 
and lies together with its boundary in R. Let Di denote a domain 
which lies in U and contains P and has at most two boundary points. 
Since the space is linear and regular, it is strongly regular, and it 
follows from Theorem 2 that the component D of Di which contains 
P is itself a domain. Obviously, D has at most two boundary points 
and lies together with these points in R. 

THEOREM 5. If D is a connected domain in a connected linear Haus­
dorff space, then D has at most two boundary points. 

PROOF. Suppose that D has three boundary points Ai, A2f and A3. 
Let P denote a point of D. Let G denote the collection of all con­
nected domains which have at most two boundary points. There exist 
three elements du, d2h and dn of G_containing Ai, A2t and A% respec­
tively such that dn-d2\ =dn-dz\ =d2x-dsi = 0. For each iy ( l ^ i ^ 3 ) , 
there exists a chain d of elements du, di2l • • • , diUi of G from Ai to P 
such that 2ij is a subset of D if 1 <j ^ ni. For each i, (1 ^ i g 3), let Di 
denote the component of DC* which contains P , and let A[ de-

t The meaning of the term linear as used here should not be confused with its 
geometric, algebraic, or function-theoretic meaning. 
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note a boundary point of Di in the boundary of J9.f Obviously, AI 
is in dn. Now for each i, (1 ^ i ^ 3 ) , let CI denote a chain of elements 
dn, d&i ' * * y d/mi of G from Ai to P such that (1) d[x contains A{, 
(2) ^{ is a subset of da and contains no point of C*+i-\-C?+2 (where 
3 + 1 in the subscripts is interpreted to mean 1), and (3) if Kj^nii, 
d[3 is a subset of Di. Obviously, for each i, ( l ^ i ^ 3 ) , and j , 
(Kj<nii), d{j has one of its boundary points in ^(y_i) and the 
other in d{(/+i). The connected domain C{* has at most two bound­
ary points, of which one is a boundary point of d[mi and the other 
(if it exists) is a boundary point of dn. Likewise, Ci* is a connected 
domain having at most two boundary points, of which one is a bound­
ary point of d2

f
m and the other (if it exists) is a boundary point of 

d2\. Since C{* contains no point of d2'i> and C2* contains no point of 
du , but each contains both a point of and a point not of the other, 
Ci* + C£* is a connected domain which contains P , but not A{, and 
whose boundary (if it exists) is a subset of dn+d2\. But Q* is a 
connected domain containing P and Ai, but no point of dn+^'i» 
which is a contradiction. 

THEOREM 6. 4̂ connected linear Hausdorff space is normal. 

PROOF. Suppose that H and K are two mutually exclusive closed 
subsets of a connected linear Hausdorff space M. Let G denote the 
collection of all the components of M—H which contain points of 
K. If C is an element of G, then C is a connected domain and, by 
Theorem 5, has at most two boundary points A\ and A2. Since both 
A i and A2 are points of iJ, there exist two regions Ri and R* contain­
ing Ai and A2, respectively, such that (Ri+R2) • (C-K) = 0 . Let C' de­
note C—C- (Ri+"R2). Obviously C' is a domain containing C-ÜC, such 
that C'-PT—O. Let G' denote the collection of all such domains C' for 
all of the elements C of G. Then <?'* contains i£ and G /*-fi' = 0, be­
cause if P were a point of H and a limit point of G'*, then every re­
gion with at most two boundary points which contains P would 
contain points of infinitely many elements of G and, consequently, 
contain an element of G. Since every element of G contains a point 
of Ky this is a contradiction. 

THEOREM 7. A linear Hausdorff space is atriodic. 

PROOF. Suppose, on the contrary, that the space contains three 
nondegenerate continua Mi, M2> and Mz having only the point P in 
common. For each i, (i = l, 2, 3), let Ai denote a point of Mi—P. 

t The notation d* denotes the sum of the elements of d. 
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There exists a region R containing P and not containing a point of 
Ai+A2+A3. Then every domain containing P and lying in R has at 
least three boundary points, and the space is not linear, contrary to 
hypothesis. 

THEOREM 8. A connected linear Hausdorff space is locally compact. 

PROOF. Suppose that P is a point of a region R. By Theorem 4, 
R contains a connected domain containing P , which lies together with 
its boundary in R and has at most two boundary points. If it exists, 
let D denote a connected domain containing P such that (1) D is a 
subset of P , and (2) D has two boundary points A and B. Other­
wise, let Q denote a connected domain containing P , having only one 
boundary point B and lying together with its boundary in P , and 
let D denote Q — P. In this last case, D is connected; for, if Q—P 
contains two components H and K, then, since P is in the boundary 
of each of them, there exists a connected domain containing P hav­
ing two boundary points and lying together with its boundary in P . 
So, in either case, D is a connected domain having two boundary 
points A and B (in the second case A = P ) . Now suppose that D con­
tains an infinite point set M which has no limit point. If X is any 
point of ikf, M—X is not connected. For, if M—X were connected, 
then M — X would be a connected domain with three boundary points 
Ay By and Xy contrary to Theorem 5. Likewise, since each component 
of M — X has X on its boundary, no component of M—X has both A 
and B on its boundary. Furthermore, M — X does not contain three 
components; for if it did, then, since each such component has X on 
its boundary, these three components together with X would contain 
a triod, contrary to Theorem 7. Consequently, for each point X of M, 
M—X is the sum of two components of M—X, AX and BXf having 
boundaries A +X and B+X respectively. Since M is infinite, it fol­
lows that either (1) there exists an infinite sequence Xi, X^y XZy • • • 
of points of M such that, for each integer nf AXn+i contains AXn, or 
(2) there exists an infinite sequence Fi, F2, F3, • • • of points of M 
such that, for each integer nf B Yn+i contains B Fn . Since M has no 
limit point, ^AXn (if the sequence Xi, X2, XZl • • • exists) is a do­
main having at most one boundary point, A. But D-\-B is a connected 
point set which contains the point X\ of ^AXny and which contains 
the point B of the complement of ^ 4 J W , but which does not con­
tain A. This is a contradiction. On the other hand, if the sequence 
Xij X2, X$y - • • does not exist, then TlBYn is a domain, and D-\-A 
is a connected point set containing both a point of ^B Yn and a point 
not of ^B Fw, but containing no boundary point of ^B Fw, which is 
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again a contradiction. Hence every infinite subset of D has at least 
one limit point. I t follows at once that the space is locally compact. 

THEOREM 9. In a connected linear Hausdorff space every connected 
domain which has two boundary points is compact. 

Theorem 9 follows from the argument for Theorem 8. 

THEOREM 10. In order that a connected linear Hausdorff space be 
metric it is necessary and sufficient that it be completely separable. 

PROOF. That the condition is necessary follows from Theorem 8 
and a well known result of Alexandroff s.* That the condition is suffi­
cient follows from Theorem 6 and a theorem of Urysohn's.f 

In fact, it is rather easy to see that, if 5 is a connected linear Haus­
dorff space, the following conditions are equivalent: 

(1) S is separable. 
(2) Every uncountable subset of S contains a limit point of itself. 
( 3 ) 5 has the Lindelof property. 
(4) 5 is completely separable. 
(5) S is metric. 

2. Applications to Moore spaces. 

DEFINITION. A Moore space is a space satisfying Axiom 0 and parts 
(1), (2), and (3) of Axiom 1 of Foundations. A complete Moore space 
is one satisfying Axioms 0 and 1 of Foundations. 

THEOREM 11. A nondegenerate connected linear Moore space is a 
simple continuous curve.% 

PROOF. Since a Moore space is a Hausdorff space, it follows from 
Theorems 4, 7, and 8 that the space is a locally compact, locally con-

* Paul Alexandroff, tfber die Metrisation der im kleinen kompakten topologischen 
Raume, Mathematische Annalen, vol. 92 (1924), pp. 294-301. 

f Paul Urysohn, Zum Metrisationsproblem, Mathematische Annalen, vol. 94 
(1925), pp. 309-315. 

J Strictly speaking, if one used the definitions of arc, simple closed curve, open 
curve, and ray as given in Foundations, then every nondegenerate connected linear 
Hausdorff space would be a simple continuous curve. But there would then exist a 
simple continuous curve in a Hausdorff space which would not be topologically 
equivalent to one in the number plane. Consequently, in addition to the properties 
of simple continuous curves set forth in the definitions in Foundations, I would re­
quire that , in order for a point set (in a Hausdorff space) to be a simple continuous 
curve, it must also be separable. For every separable, connected linear Hausdorff space 
is topologically equivalent to a plane simple continuous curve. 
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nected, atriodic complete Moore space. By a theorem of mine,* such 
a space if nondegenerate is a simple continuous curve. 

I t can be shown with the help of the theorems and discussion on 
pages 81, 82, and 83 of Foundations and Theorem 11 of this paper that 
the following three propositions are true. 

THEOREM 12. Every nondegenerate continuum in a linear Moore 
space M is a simple continuous curve. 

THEOREM 13. Every nondegenerate linear continuum in a Moore 
space is a simple continuous curve. 

THEOREM 14. Every nondegenerate linear connected subset of a 
Moore space is homeomorphic with a simple continuous curve. 

THEOREM 15. In order that a nondegenerate, locally connected, com­
plete Moore space be a linear space, it is necessary and sufficient that 
it contain no simple triod. 

PROOF. If the space is not linear, it is clear that it contains a con­
nected domain with at least three boundary points A, B, and C. Let 
DA, DB, and Dc denote three mutually exclusive connected domains 
containing A, B, and C respectively. By Theorem 1 in Chapter II of 
Foundations, there exists an arc AB from A to B lying in D+DA +DB-
Likewise, there exists an arc T from C to AB lying in D+Dc and hav­
ing only one point in common with AB. Obviously, AB + T contains 
a simple triod. Hence, the condition is sufficient. By Theorem 7, the 
condition is necessary. 

THEOREM 16. If a nondegenerate continuous curve M in a complete 
Moore space contains no simple triod, then M is a simple continuous 
curve.f 

Theorem 16 may be established with the help of Theorems 118 and 
120 in Chapter I and the argument for Theorems 6 and 7 in Chapter 
II of Foundations together with Theorems 11 and 15 above. 

THE UNIVERSITY OF TEXAS 

* Lemma A of my paper, Concerning the boundary of a complementary domain of a 
continuous curve, loc. cit. 

t Theorem 16 is identical with Lemma A of my paper just referred to, except that 
in Theorem 16 it is not stipulated that M be locally compact. 


