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I. INTRODUCTION 

1. Scope of the paper. The main purpose of this paper is to give an 
account of the au thors recent researches on differential geometry 
with general coordinates, f In these geometries the geometric space is 
taken to be a Hausdorff topological space, while the coordinate space 
is taken to be a linear topological space. Several important topics in 
general analysis had their inception in these differential geometric re­
searches. Such analytical topics come under the following captions: 
completely integrable abstract differential equations,J boundary 
value problems in general analysis,§ general continuous group theory 
with abstract parameters, || abstract analytic functions, 1| the Michal-
Paxson differential in special linear topological spaces,** and the 
M-differential in linear topological spaces.ft A detailed account, or 
even a brief account, of most of these purely analytical matters is, 
however, out of the question here. 

We are convinced that the subject of general differential geometry 
is destined to become one of the great branches of mathematics, com­
parable to the present status of general (abstract) algebra and general 
analysis. There is still time for a whole army of young mathematicians 
to earn their first laurels in general differential geometry while the 
subject is still in its infancy. 

2. Special instances and special features. The differential geome­
tries treated are dimensionless in the sense that no dimensionality 
postulate (finite or infinite) is specified. The general theory thus con­
tains as instances the classical Riemannian and non-Riemannian ge­
ometries with finite or infinite number of dimensions. An account of 
these instances has, however, been crowded out. The interested reader 

* An address delivered before the Berkeley meeting of the Society on April 9, 
1938, by invitation of the Program Committee. 

t Michal [6-13]. The numbers refer to the entries in the bibliography at the end 
of the paper. 

t Michal and Elconin [l, 3]. 
§ Michal and Hyers [1]. 
|| Michal and Paxson [l, 2]; Michal and Elconin [2]; Michal, Highberg, and 

Taylor [ l ] . 
T Martin [ l ] ; Michal and Martin [ l ] ; Michal and Clifford [ l ] ; Taylor [2-6]. 
** Michal and Paxson [3, 4]. 
ft Michal [13]. 
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will notice that the general theory presented here furnishes readily 
many novel results in the finite dimensional instances and especially 
in the infinite dimensional functional instances. 

Although much of the general theory presented here has been pub­
lished or is in the press, there are many results that are given here for 
the first time. For example, large portions of Chapters III, IV, V, and 
XI , and Theorem 14.3 of Chapter VI are new. 

The work* on abstract normal coordinates in collaboration with 
D. H. Hyers is reported in Chapters VIII and IX. 

II . INFINITELY MANY DIMENSIONAL DIFFERENTIAL GEOMETRIES 

3. Historical remarks. Although finite dimensional as well as vari­
ous infinite dimensional differential geometries furnish noteworthy in­
stances of general differential geometries with abstract coordinates, 
it was the infinite dimensional instances that paved the way to the 
general theories. More specifically, the author'sf researches during 
the period 1927-1931 on Riemannian and non-Riemannian geome­
tries with coordinates in the space of real continuous functions of a 
real variable showed the need for simplifying generalizations and for 
a study of the foundations. Although the writing of continuous vari­
ables as indices together with the use of the integration convention J 
for an index repeated once as a subscript and once as a superscript 
was helpful, the functional algebra was still too complicated to allow 
significant new advances. Motivated by such considerations as these, 
the author began his researches on general differential geometry with 
Banach coordinates. The turn of events in these studies was most 
gratifying—not only were numerous fundamental problems in the 
function space geometries solved automatically, but also the whole 
subject of differential geometry was viewed in clearer light from new 
vantage points. 

4. An infinite dimensional Riemannian geometry. This section and 
the next one are not intended to be even brief accounts of differential 
geometries with infinite dimensions, but are merely indicative of the 
trend in formal outlook from the finite dimensional geometries to the 
infinite dimensional geometries. In my first studies § in 1927, the ele­
ment of arc length ds of the functional Riemannian geometry was 
given by 

* Michal and Hyers [2-4]. 
t Michal [1-5]. 
J For example, faK(x, s)y(s)ds is written as Ks

xy8. 
§ Michal [ l ] . 
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(4.1) ds = ( f (ôx«yda + g^[^]àxaÔcA112. 

For invariantive purposes, this necessitated the transformation of co­
ordinates x" =ƒ"[#*] to have Fréchet differentials of the second kind 
(Fredholm type) 

(4.2) dxa = dxa + <j>f [a?]oxP. 

Soon thereafter the element of arc length was taken in the more gen­
eral form 

(4.3) ds = {gaW]{bxaY + gat{x°]bx<*bxtyiK 

The transformation of coordinates was then allowed to have Fréchet 
differentials of the third kind : 

(4.4) bxa = \pa[x(r]ôxa + \pf [a?]ôxP. 

5. An infinite dimensional differential geometry with a linear con­
nection.* The fundamental geometric object in the infinite dimen­
sional Riemannian geometry with element of arc length (4.3) is the 
metric functional tensor with components consisting of the ordered 
pair of functional (£«[#*], ga0[#*])• The functional "Christoffel" sym­
bols based on the metric functional tensor constitute the fundamental 
linear connection of the geometry. 

The fundamental geometric object (not a functional tensor) in an 
infinite dimensional differential geometry with a functional linear con­
nection is the functional linear connection (functional affine connec­
tion is an alternative terminology). The components of the functional 
linear connection consist of an ordered sequence of functionals 

( r ! * [ / ] , Ma[x], Na[x], Oa[x]9 / > ' [ / ] ) , 

with the property that the functional covariant differential 

«*'[/] + r U " $ / + MÏfôx" + N^Bx" + 0lfôxi+ PYÔX* 

is a contra variant functional vector field whenever £*[#*] is a contra-
variant functional vector field. 

I I I . DIFFERENTIAL IN LINEAR TOPOLOGICAL SPACES 

6. Topological spaces. A differential geometry is concerned with 
geometric spaces and their maps in coordinate spaces. A geometric 
space consists of a class of objects capable of supporting some sort of 

* Michal [2-5]. 
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a topology, while a coordinate space consists of a class of objects ca­
pable of supporting a differential calculus. 

By a topological space we mean a Hausdorff topological space; that 
is, a class of undefined elements, called points, with a neighborhood 
topology satisfying the four well known Hausdorff postulates 
(Fréchet [2], Hausdorff [ l ] ) : 

(1) xtSx. 
(2) If y e Sx, then there exists an o** c Oj;. 

(4) If x^y, then there exist Sx and Sy such that the set intersection 
SxSy is the null set. 

By a linear topological space (Kolmogoroff [ l ] , Tychonoff [ l ]) , we 
mean a topological space whose points form an abstract linear space 
such that the sum function x+y and the product function ax, with 
real variable a, are respectively continuous functions of both vari­
ables. 

As the coordinate spaces of the differential geometries to be re­
ported on in the sequel are linear topological spaces, it is convenient 
in this section to give the fundamentals of a differential calculus* of 
functions with arguments and values in linear topological spaces. 
Many kinds of definitions of differentials have been given in the clas­
sical differential calculi of finite, as well as of infinite, dimensional 
spaces. However, the most useful definitions from the point of view 
of the geometrical applications are those that give the differential as 
a "first order approximation" to the increment. 

Let T\ and T2 be any two linear topological spaces. I t is to be ob­
served that 7\ and T2 are not necessarily normed metric spaces—not 
even normable spaces. For a necessary and sufficient condition that a 
linear topological space be normable see Kolmogoroff [l ]. A function 
l(x) on f T\ to r 2 is termed linear if it is additive and continuous. By 
the usual methods, we see that a linear function l(x) on Ti to T2 is 
a homogeneous function of degree one. 

7. A topological differential. We make the following definition: 

DEFINITION OF M-DIFFERENTIAL. Letf(x) be a function on SXQ to T2, 
where SXQ is a Hausdorff neighborhood of xo e T\. The f unction f {x) will 

* Michal [13]. The extensions to complex linear topological spaces are made in 
the obvious way. For example, a linear function l(x) will be an additive continuous 
function such that /((-l)1 '2*) = (-l) l/»/(*). 

t By ƒ (x) on Si to S2 we mean that ƒ (x) is defined throughout the set Si and with 
values contained in the set 52 but not necessarily exhausting the whole set 52. 
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be said to be M-differentiable at X — XQ, and f(x0; ôx) will be called an 
M-differential of f(x) at x — $o with increment ox, if 

(1) there exists a linear f unction f (xQ; 8X) of ôx on T\ to T2\ 
(2) there exists a function e(x0, xi, x2) with arguments in T\ and values 

in T2 such that 
(2a) e(x0, 0, x) =0for all x z Ti, 
(2b) e(x0, Xi, \x2) =\e(x0, xi, x2) for all\>0,for all Xi in some Haus-

dorff neighborhood of 0 e 7\, and for all x2 z 7\, 
(2c) e(#o, Xi, x2) is continuous in (xi, x2) at #i = 0, x2 = x2 for all 

x2z 7 \ ; 
(3) there exists some Hausdorff neighborhood Si of 0 e 7\ such that, 

for all bx z Si, the differential f (x0 ; bx) is a first order approximation to 
the increment f {xv + bx) —f(x0) in the sense that 

f(x0 + bx) — f(x0) — f(xo; bx) = e(#0, bx, bx) 

for all bx z Si. 

THEOREM 7.1. If an M-differential of f(x) at X = XQ exists, then it is 
unique and f(x) is continuous at x = XQ. 

THEOREM 7.2. Iffx(x) and f2(x) are M-differentiable at X — XQ, then 
fz(x)=afi(x)+l3f2(x) is M-differentiable at X — XQ and 

fz(xQ; bx) = a/i(#0; ôx) + @f2(x0; bx). 

THEOREM 7.3. Let Tz be a third linear topological space. If f(x) on 
Sx0 C TI to T2 is M-differentiable at x — XQ, and if <t>(y) on* f(SXo) to Tz 
is M-differentiable at JQ = ƒ(x0), then ^p{x)=(j>(J{x)) is M-differentiable 
at x = XQ and 

\p(x0] bx) = <t>(f(x0);f(xo; bx)). 

PROOF. There exists a Hausdorff neighborhood VQ of 0 e T2 such 
that, for all by z V0, 

<t>(yo + by) - <t>(y0) - <K3>o; by) = ei(y0, by, by). 

Take 3>o=/(#o). By Theorem 7.1, there exists a neighborhood Si 
of 0 e JTI such that ƒ(x0 + bx) — f (xQ) z VQ for each bx z Si. Take 
by =f(xa + bx) —f(x0) and obtain 

*(ƒ(*<> + bx)) - 4>(J(XQ)) - 4>(f(x0);f(xo + bx) - ƒ(*<>)) 

= €i(/(#o), f(%o + bx) - f(x0), f(x0 + ôx) - f(x0)) 

for bx z Si. But, by hypothesis, there exists a neighborhood S0 of 
0 E T\ such that, for all bx z So, 

f(xQ + bx) — f(x0) = f(xQ; bx) + e2(x0, bx, bx). 

* The notation ƒ (SXo) stands for the set of values of f(x) as x ranges over the set SX(t. 
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Consequently, from the definition of \//(x), the properties of the €1 and 
€2 functions, the linearity of $(3>oî 83O, and the obvious use of the 
Hausdorff postulates, there exists a neighborhood So" of 0 e T\ such 
that , for all ôx e 5 o ; , 

\p(xQ + ôx) — \p(x0) - <t>(f(x0);f(xQ; èx)) = <K/Oo); €2(x0, ôx, ôx)) 

+ €i(/(xo), /(xo; ôx) + €2(xo, ôx, ôx), /(x0 ; ôx) + €2(x0, ôx, ôx)). 

Define 

€3(x0, Xi, x2) = 0(/(xo); €2(x0, xi, x2)) 

+ €i(/(x0),/(x0; xi) + €2(x0, xi, xi),/(x0; x2) + e2(x0, xh x2)). 

Clearly 

€3(x0, 0, x) = 0, €3(x0, Xi, Xx2) = Xe3(x0, xx, x2), for X > 0. 

The continuity of e3(xo, Xi, x2) in (xi, x2) at (0, x2) follows without 
much difficulty from the continuity properties of the defining func­
tions. Hence €3(x0, Xi, x2) is an admissible e(x0, Xi, x2) function. The 
theorem follows readily on noting that ^( / (x 0) ; / (x 0 ; ôx)) is a linear 
function of ôx. 

IV. OTHER DIFFERENTIALS AND THEIR RELATION TO 

THE If-DIFFERENTIAL 

8. G-differential and IDf-differential. We make the following defi­
nition : 

DEFINITION OF G-DIFFERENTIAL. Letf(x) be a function on SXo to T2j 

where SXo is a Hausdorff neighborhood of Xo e T\. We shall say that f {x) 
is G-differentiable at X — Xo, and jf(x0, ôx) is its G-differential at x = x0 

with increment ôx, if, for any chosen ôx e 7\ : 
Given any Hausdorff neighborhood V0 of 0 e T2l there exists a ô > 0 

such that* 

/ ( x 0 + XÔX) - ƒ(*„) _, . N . T7 
e/(x0, ôx) + Vo 

X 
for each X satisfying 0 < | X| <ô . 

THEOREM 8.1. If f(x) is M-differentiable at x = x0, then f(x) is 
G-differentiable at x = Xo, and the two differentials are equal. 

DEFINITION OF JMT-DIFFERENTIAL. Let x0 be any chosen element of 
Ti, SXQ any chosen Hausdorff neighborhood of x0, and Xo any chosen real 

* By ƒ (#0, Ox) + Vo we mean the set of all elements ƒ (XQ, ÔX) -\-y, as y ranges over 
the neighborhood Vo. 
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number. Let x(K) be a function of a real variable A with values in SXo 

such that XQ = X(KO), and such that dx(K)/d\ exists at A — Xo. A function 
f(x) on SXo to r 2 will be said to be HM-differentiable at X — XQ with 
f(xQ'.8x) as its H M-differential at X — XQ, if there exists a linear f unction 
f(xo : ox) of ôx having arguments in T\ and values in T% such that, for 
every admissible x(\) : 

(1) df(x(X))/d\ exists at A=A0; 
(2) df(x(K))/d\ =f(x0:dx(\)/d\) for X =X0. 

THEOREM 8.2. If f{x) is M-differentiable at X — XQ, then f(x) is HM-
differentiable at X — XQ, and the two differentials are equal. 

A modified iJikf-differential is obtained if, in the definition for an 
i/ikf-differential, Xo is always taken to be Xo = 0. This modified HM-
differential is itself the abstraction of a differential in a function space 
studied recently by Fréchet. The reader is referred to Fréchet [3, 
p. 244]. 

9. Differentials in linear metric spaces. A differential calculus in 
complete normed linear spaces (Banach spaces) was initiated by 
Fréchet [ l ] . The differential calculi in such metric spaces have 
been extensively studied in recent years by many authors: Fréchet, 
Hildebrandt, Graves, R. S. Martin, Taylor, Elconin, Hyers, Leray, 
Schauder, Kerner, Highberg, Paxson, Michal, and several others. For 
the literature on the subject the reader is referred to the bibliographi­
cal entries for these authors. 

A Banach space is a complete linear space with a topology de­
termined by a norm \\x\\ that satisfies the following postulates: 
(1) ||x+y||^|H|+||y||; (2) ||a*|IH"l Mh (3) Ml ̂ ° and Ml = 0 if 

and only if x = 0. A Banach space is then clearly a linear topological 
space whose Hausdorff neighborhoods SXQ are "spherical" neighbor­
hoods ||x — #o|| <S with respect to which the generalized Cauchy cri­
terion for convergence holds. Although a Banach space is a special 
kind of a linear topological space with a metric topology, it is suffi­
ciently general to include as instances many function spaces. More­
over, a Hubert space (real) is an infinitely dimensional separable 
Banach space whose norm is defined by \\x\\ — (x, x)112 in terms of a 
postulated symmetric bilinear inner product (x, y). For such cognate 
subjects as linear transformations in Banach spaces and Hubert 
spaces the reader is referred to Banach [ l ] and Stone [ l ] . 

THEOREM 9.1. If the linear topological spaces 7\ and T% are complete 
linear normed spaces {Banach spaces), and if f(x) is Fréchet differen-
tiable at X = XQ, then f (X) is M-differentiable at X — XQ, and the two dif­
ferentials are equal. 
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THEOREM 9.2. If the linear topological spaces 7\ and T2 are finite 
dimensional arithmetic spaces, and if f(x) is differentiable at x — xo in 
the Stolz-Young-Frêchet sense, then f (x) is M-differ entiable at X — Xo, 
and the differentials are equal. Conversely, if fix) is M-differ entiable at 
x = Xo, then it is differ entiable at x = Xo in the Stolz- Young-Frêchet sense. 

10. Further topics in topological differential calculus. A slight gen­
eralization of the M-differential discussed in §7 can be obtained by 
replacing condition (3) in the definition of an ikf-differential by the 
following less stringent condition : 

(3') there exists some Hausdorff neighborhood So of 0 e T\ such that, 
for all ôx t So', the differential f (xo ; dx) is a first order approximation 
to the increment f (XQ+ÔX) —f(xo) in the sense that 

f(x0 + dx) — f(xo) — f(x0; öx) e II 

for all ôx t So', where II stands for the set of values of e(xo, ôx, ôx) as 
ôx ranges over So'. 

I t would be interesting to develop the properties of such a modified 
ikf-differential. 

In case Ti is a special linear topological space and 7^ is the same 
space as T\, a certain topological differential was studied by Michal 
and Paxson. It is still an open question whether the differentiability 
theorem on the composition of functions is valid for the Michal-
Paxson differential. If T\, however, is further conditioned to be a 
Banach space, the Michal-Paxson differential reduces to a Frêchet 
differential and the validity of the theorem is then evident. For a 
systematic development of the Michal-Paxson differential, the 
reader is referred to Michal and Paxson [4]. 

V . DlFFERENTIABLE MANIFOLDS WITH LINEAR TOPOLOGICAL 

COORDINATES 

11. Coordinate systems. I t has already been remarked that a dif­
ferential geometry deals with the theory of geometric spaces (Haus­
dorff topological spaces) and their maps in coordinate spaces (linear 
topological spaces). The mathematical "cameras," the mapping 
functions, are what we call the coordinate systems, while the "image" 
of a geometric point P is what we call the coordinate* of P . The unde­
fined elements for a differential geometry are not only the geometric 

* This terminology is in slight conflict with the usage of this word in classical 
«-dimensional geometry. According to our new terminology, the one-rowed matrix x 
of n numbers x = (x1, x2, • • • , xn) will constitute the coordinate of the point P. 
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points and their coordinates, but also the coordinate systems and 
their geometrical and coordinate domains. 

Let us proceed now with the more precise postulational formula­
tion. Let Hy the geometric space, be a Hausdorff topological space, 
and let P, the coordinate space, be a linear topological space. We 
postulate the existence of a class K of undefined coordinate systems {allow-
able coordinate systems), mapping f unctions with arguments in H and 
values in P, that satisfies the following postulates : 

(1) To each Hausdorff neighborhood U there corresponds at least 
one coordinate system x(P) of K that maps homeomorphically U on 
some open set O of P (call V the geometrical domain and O the co­
ordinate domain, respectively, of the coordinate system x{P)). 

(2) All such coordinate domains O are contained in some fixed 
open set O0. 

(3) There exists a Hausdorff neighborhood UQ and a coordinate 
system x0(P) of K with O0 as its coordinate domain. 

(4) If a Hausdorff neighborhood U\ c U, and if V is the geometri­
cal domain of a coordinate system x(P), then x(P), with U\ as a 
geometrical domain, is a coordinate system of K. 

(5) If x(P) is a coordinate system with V and O as geometrical and 
coordinate domains, respectively, and x(x) is a homeomorphism tak­
ing O into an open set Oi of P, then ïï(x(P)) is a coordinate system of 
K with V as geometrical domain and 0\ as coordinate domain. 

If two Hausdorff neighborhoods U\ and £/2 of H intersect, we have 
two mappings of their intersection on open subsets OicOi and 
0 2 c 0 2 , respectively. This establishes a homeomorphism x(x)r called 
a transformation of coordinates (Oi and 02 will be called the domains 
of definition of x{x) and x(x) respectively), that takes an open subset 
Oi of Oi into an open subset 9 2 of 02. Conversely,* if x=\p(x) is a 
homeomorphism taking an open set 0± c O0 into an open set 02 c O0, 
then there exist two coordinate systems x(P) and x(P) of K with co­
ordinate domains 0{ cOi and 0{ c 0 2 , respectively, such that 
x=\p(x) on CV to Oi is a transformation of coordinates from the sys­
tem x(P) to the system x(P). 

It is possible now to define a scalar field, a geometrical object with 
components. A scalar field is a numerically valued f unction ƒ (P), de­
fined on a subset of the geometrical space, such that its components 
in two coordinate systems x(Pi) and #(P2), 

a(x) = / ( P i ( * ) ) , *(*) = /CP«(*)) > 

* If the linear topological space T is specialized to a Banach space, see Michal and 
Hyers [3], and Michal and Paxson [2]. 
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are related by &(%)=*a(x) throughout the intersection of the geo­
metrical domains of x(Pi) and x(P2). 

One can obviously extend the terminology and consider scalar 
fields for which the values of f(P) are in any class of objects. 

12. Differentiable manifolds and contravariant vectors. We shall 
now assume that each transformation of coordinates x = x(x), and 
its inverse x = x(x), possess first AT-differentials x(x; ox), continuous 
in x, and x(x; ôx), continuous in x, throughout their respective do­
mains of definition. A geometric space that satisfies the postulates of 
§11, and such that the transformations of coordinates satisfy the 
above conditions, will be called a 1-differentiable manifold (with 
linear topological coordinates). 

I t can be shown that x(x; X) is a solvable linear function of X with 
x(x(x); ix) as inverse for each x in the domain of definition of x(x). 

Contravariant vectors and contravariant vector field (c.v.f.) can now 
be defined for a 1-differentiable manifold. A contravariant vector (dif­
ferential) is a geometric object with a component in each coordinate 
system such that, in the intersection of two Hausdorff neighborhoods, the 
characteristic law of transformation relating its components in the two 
coordinate systems is* £ = #(#; £). 

A contravariant vector field can now be defined in the obvious way. 
The characteristic law under which its components transform is given 
by 

£0) = #0;£0)). 
VI. DIFFERENTIABLE MANIFOLD WITH A LINEAR CONNECTION 

13. Linear connection. A geometric object called a linear connec­
tion plays a fundamental role in finite dimensional differential ge­
ometry as well as in the author's infinite dimensional geometries. It 
is natural, therefore, at this early stage of the development of our 
subject to add additional restrictions on our coordinate systems and 
transformations so as to make possible the definition of a linear con­
nection in our present more general situation. Although it is possible 
to go far formally without specializing the linear topological coordi­
nate space, and although actually one can prove many theorems with 
the aid of long cumbersome restrictions—automatically satisfied in 
the special case of a Banach space—it seems more feasible in the pres­
ent exposition to restrict ourselves to the more special linear metric 
coordinate space. So from now on the linear topological coordinate space 
T will be required to be a Banach space. We shall also follow from now 

* Michal [8]. 
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on the historical development and require all differentials to be Frêchet 
differentials. 

Let us consider then a 1-differentiable manifold (with Banach co­
ordinates), and let us assume that the second successive differential 
x(x; ôix; ô2x) exists continuously in x throughout the domain of defi­
nition of each transformation of coordinates x(x). We shall call such 
a manifold a 2-differentiable manifold. An m-differentiable manifold is 
defined in the obvious manner. 

If H is a 2-differentiable manifold, then any transformation of co­
ordinates x{x), and its inverse x(x), have first and second differentials 
throughout their domains of definition. A geometrical object with com­
ponents T(x, £i, £2), bilinear in two contravariant vectors £i and £2, will 
be called a linear connection* if, under a transformation of coordinates, 
the components T(x, £i, £2) undergo the transformation 

(13.1) f(x, |*i, I2) = x(x; T(x, &, £2)) + x(x; x(x; | t ; &)). 

This transformation law can also be written in the following equiva­
lent form 

(13.2) f (*,*&,&) = * ( * ; r ( * , $1, £2)) - * ( * ; &; £2). 

14. Covariant differential of a contravariant vector field. If a{x) is 
a scalar field, then the differential a(x; ôx) is a scalar field valued 
linear form in the contravariant vector ox, that is, under a trans­
formation of coordinates 

â(x; ôx) = a(x; ôx). 

On the other hand, if £(x) is a differentiable con tra variant vector 
field, it is not true in general that the differential £(#; ôx) is a c.v.f. 
(contravariant vector field) valued linear form in a contravariant 
vector ôx. However, if the geometric space H is at least a 2-manifold 
with a linear connection T(x, £1, £2), then, for every differentiable 
contra variant vector field £(#), the form £(x| ôx) defined by 

(14.1) (•(* J ôx) = £(*; ôx) + T(x, £(x), ôx) 

is a c.v.f. valued linear form in the contravariant vector ôx. We shall 
call %(x\ôx) the covariant differentialf of the contravariant vector field 

Since £(x\ ôx) is a c.v.f. valued linear form in a contravariant vec­
tor ôx, it is clear that the successive covariant differentials of a c.v.f. 

* Michal [8, 9]. 
t Michal [8]. 
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£(x) can be made to depend on the covariant differential of a c.v.f. 
valued multilinear form in several contravariant vectors. 

THEOREM 14.1. Let T(x, £, Sx) be a linear connection in a 2-differ-
entiable manifold and F(x, £1, £2, • • • , %n) a function with the following 
properties : 

(i) F is a c.v.f. valued multilinear form in the n arbitrary contra-
variant vectors £1, • • • , £n; 

(ii) the partial differential F(x, £1, £2, • • • , £wî Sx) exists continu­
ously in x throughout the coordinate domain of the coordinate system 
x(P). 

Then the function F(x, £1, £2, • • • , £ » | Sx) defined by the equation 

F(x, | i , €1, • • • , f. I Sx) = F(x, fc, & , - • - , £„; Sx) 
n 

(14.2) - 2 > ( * , £1, • • • , £*_i, r (* , fc, 8»), £i+1, • • - , £ * ) 

+ r(a?, F(*, £1, £2, • • • ,*»),**) 

is a c.z/./. valued multilinear form in £1, £2, • • • , £w, Sx. We shall call 
F(%> £i> £2, * • *, £n| Sx) the covariant differential* of F(x> £1, £2, * • •, £n). 

If the geometrical space is a 3-differentiable manifold with a linear 
connection T(x, £1, £2), then the requirement that the differential 
r ( # , £1, £2; Sx) exist continuously in x persists under a transformation 
of coordinates. On applying the preceding theorem one can prove the 
following theorem. 

THEOREM 14.2. If the geometrical space His a 3-differentiable mani­
fold with a linear connection T(x, £1, £2), and if the differential 
r (# , £1, £2; Sx) exists continuously in x, then f or every c.v.f. £(x) with 
continuous second differential £(x; Si#; ô2x) in x the following commuta­
tion formula holds : 

£(# J h\% I 02#) — £(# I Six I 8ix) = B(x, £(#), Six, Ô2X) 

— 2£(#| il(x, 8ix, 82x)), 

where B(x, £, Six, 52x), called the curvature form, is defined by 

B(x, £, 81X, fax) = T(x, £, 8ix; 82X) — T(x, £, 82X; 8ix) 
(14.4) 

+ r(#, Y(x, £, 5i^), ô2#) — r(#, r(#, £, 52#), 5 I # ) , 

and where Î2(#, ôi#, ô2#), called the torsion form, is defined by 

(14.5) Q(x, ôix, ô2#) = {r(#, ôi#, ô2x) — T(x> 82x, hi%))/2. 

Michal [8]. 
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The curvature form is a c.v.f. valued trilinear form, while the torsion 
form is a c.v.f. valued bilinear form. 

With evident restrictions on the geometrical space H and the linear 
connection T(x, £1, £2), it is possible to consider the successive co-
variant differentials of the curvature form B(x, £, dix, Ô2X). 

Besides the obvious skew-symmetric and cyclic identities* satisfied 
by the curvature form based on a symmetric linear connection, one 
can show that the following "Bianchi" identity holds for a symmetric 
linear connection : 

(14.6) B(x, *, fc, £2 ! fc) + B(x, $, £3, h I &) + B(x, £, &, & I £1) = 0. 

An indirect but elegant proof of (14.6) can be given with the aid of the 
properties of abstract normal coordinates. See §17. This method of 
proof requires, however, additional restrictions on the space H and 
its linear connection. 

A differentiate manifold of interest is one with a fundamental geo­
metric object consisting of a Banach scalar valued linear form 
F(x, £) in a contravariant vector £. If we assume that F(x, £) is con­
tinuously differentiate in x and is a solvable linear function of £ with 
F'(x, X) as inverse function, then F'(x, X) is a c.v.f. valued linear form 
in a Banach scalar X, and T(x, £1, £2), defined by either one of the two 
equal expressions 

(14.7) T(x, &, £2) = - F'(x,F{x, £x); &) = F\x,F{x, fc; £2)), 

is a linear connection with a curvature form* B(x, £1, £2, £3) = 0 . 
A special case of great interest is furnished by the group scalar 

form F(x, £). We call F(xy £) a group scalar form] if, in addition to the 
above restrictions, it satisfies the abstract differential equation! 

(14.8) F(x, fc; £2) - F(x, £2; £1) = C(F(x, h),F(x, &)), 

where C(X, JU), called a structural form, is a Banach scalar valued 
bilinear form in two Banach scalar variables X and /x,that satisfies the 
identities { 

C(X, M) = - C ( M , X ) , 
( 1 4 . 9 ) C(C(X, /x), v) + C(C(i>, X), M) + C(C(», v), X) = 0. 

THEOREM 14.3. If F(x, £) is a group scalar form with F'(x, X) as 
inverse f unction and T(x, £1, £2) w the linear connection (14.7), then the 
curvature form Bs(x, £1, £2, £3) based on the symmetric linear connection 

* Michal [7]. 
t The existence of a group scalar form for a differentiable group manifold with 

Banach coordinates is shown in Michal-Paxson [l, 2]. See also Michal-Elconin [2]. 
% Michal-Elconin [2]. 
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S(*, fa, fa) = {r(* f ?x, fa) + r (* , fa, fa)}/2 

becomes the elegant expression 

Bs(x, fa, fa, fa) = F ( * , C(C(X2, X3), Xx))/4, 

where \i = F(x, fa), (i = l, 2, 3), awi C(X, /x) £s tóe structural f or m. The 
covariant differential of Bs(x, fa, fa, fa) based on S(x, fa, fa) vanishes: 

Bs(x,iL, fa, fa | fa) = 0. 

VII. PARALLEL DISPLACEMENT AND AUTO PARALLEL CURVES 

15. Parallel displacement of a vector field along a curve. If x = x(t) 
is the coordinate equation of a curve C in a 2-differentiable manifold 
with a linear connection, then the defining equations of parallelism of 
a c.v.f. £(#) along the given curve C are* 

dè / d A 
(15.1) _ + r ^ , — J = «(*)£(*)> 

where a(/) is an arbitrarily chosen numerically valued scalar field. 
If we then eliminate a{t) in (15.1), the equations of parallelism take 
the equivalent form 

(d£ / dx\) /d£ / dx\\ 

«,.» «{j + r^ï l- i t f + r^ij)^, 
where /(£) is an arbitrary scalar valued linear form in a contra variant 
vector fa 

If there exists a scalar valued bilinear inner product [fa, fa] in the 
contravariant vectors fa and fa, and if [fa, fa] is definite in each 
variable—that is, [fa, fa]=0 for all fa implies fa = 0, and [fa, fa]=0 
for all fa implies fa = 0 —then the equations of parallel displacement 
(15.1) can be written 

(15.3) ft, t ] { ! + r(,. «, d£)} - [ | + r(«, t, d£), L} 

for all L. 

16. Differential equations of paths. Amongst the curves of special 
interest in a 2-differentiable manifold are the autoparallel curves, or 
paths. A path is a curve with the property that its "tangent" vector 
dx/dt forms a parallel vector field along the curve with respect to the 
curve.* I t follows immediately, therefore, from the preceding section 

* Michal [7, 10]. 
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that a path satisfies the differential equation 

d2x / dx dx\ dx d2x / dx dx\ dx 
(16.1) + r ( ^ , — ; —) = «(/) —, 

dt2 \ dt dtj dt 
and hence 

( dx\ (d2x / dx dxY) 

Jt/Tdt2 \'~dt' ~dt)j 
(16.2) 

/d2x / dx dx\\ dx 
= /( + T(xy—, — )) —, 

\dt2 \ dt dt)) dt 
where /(£) is an arbitrary scalar valued linear form in a contra variant 
vector £. Again, if there exists a scalar valued bilinear inner product 
[£, L] that is definite in each variable, a path satisfies the differential 
equation 

Vdx "| Cd2x / dx dx\\ 

\~dt' iXdt2 \'!t' It)) 
fd2x / dx dx\ 1 

"" L ^ V ' ~dtJ ~dtr J dt 
for all L. 

There always exists a parameter sy called an affine parameter, such 
that a path satisfies the differential equation 

d2x / dx dx\ 
(16.4) + r ( # , —, — ) = 0. 

ds2 \ ds dsf 
Along a path an affine parameter is determined to within an affine 
transformation. 

The question of the existence of a path passing through two given 
points was discussed by Michal and Hyers [ l ] . In this paper two 
point boundary value problems for abstract differential equations 
(16.4) were studied. For details see the Michal-Hyers paper just cited. 

VII I . ABSTRACT NORMAL COORDINATES 

17. Existence of normal coordinates. By a normal coordinate sys­
tem y(P) with center P 0 we mean a coordinate system y(P) with the 
property that, in the neighborhood of a point PQ with coordinate 
3> = 0 corresponding to the value 5 = 0 of the affine parameter, the 
equation of a path through P 0 takes the simple form 

(17.1) y = sa, 

where a is a Banach element. To prove the existence of normal co-
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ordinate systems in a differentiate manifold with a symmetric linear 
connection, it seems necessary to make some additional restrictions 
on the differentiate manifold and on the symmetric linear connec­
tion. The first study of abstract normal coordinates was made by 
Michal and Hyers in Michal-Hyers [2, 3 ] . The following fundamen­
tal existence theorem was proved.* 

THEOREM 17.1. Let 2 be the coordinate domain of an allowable K(m) 

coordinate system x{P), and let the linear connection T(x, £i, £2) be of 
class CM locally uniformly on S, subject to the restriction m^n+2. 
Then corresponding to each point q e 2 there is a constant c>0 and a 

function h(p, x), of class C(w) uniformly on E2((q)2C), such that for any 
choice of p in (q)c the transformation y = h(p, x) is of class KM for 
x e (p)c and defines a normal coordinate system y(P) with center Po(p). 

The preceding theorem shows that there exist normal coordinate 
systems in a special w-differentiable manifold with a symmetric 
linear connection. The coordinate systems, called here allowable 
K(m) coordinate systems, of the class K (see §11) require that the 
transformations of coordinates are of class Kim). See Michal-Hyers 
[3] for the definition of class K^m) and other definitions not given 
explicitly here. 

The following two theorems, stated and proved in Michal-Hyers 
[3], show clearly the importance and usefulness of normal coordi­
nates in general differential geometry. We use a dagger f to denote 
evaluation in a normal coordinate system. 

THEOREM 17.2. For y in the coordinate domain of the normal coordi­
nate system y{P), 

(17.2) t r ( y , y , y ) = 0 , 

while 

(17.3) t r(0, X, X) = 0 

for all X in the Banach coordinate space T. 

THEOREM 17.3. Let x(P) and x(P) be two allowable j£>+2> coordinate 
systems (n ^ 2) whose geometric domains have a point PQ in common, 
and let the linear connection T(x, £1, £2) be of class C(w) locally uniformly 
in the coordinate domain of x(P). Suppose that y{P) and y(P) are the 
normal coordinate systems determined by the coordinate systems x(P) 
and x(P), respectively, and with the same point PQ of H as center. Then 
there exist two open subsets Sy and S y of the coordinate domains of y{P) 
and y(P)> respectively, such that 

* Michal-Hyers [3], 
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(1) O e S , , OtSy] 
(2) the linear coordinate transformation 

(17.4) y — x(p; y), where p = x(P0), 

takes Sy into Sy ; that is, normal coordinates undergo a linear transfor­
mation under a general transformation of the determining coordinates. 

18. Differential invariants. The actual use of normal coordinate 
methods often requires the explicit formulas giving the differentials 
of the transformation y = h(p, x) to normal coordinates in terms of the 
linear connection and its differentials. For simplicity of notation define 
fj,{y) and its inverse v(x) by 

(18.1) n(y) =f(p,y), v(x) = h(p, x). 

Under the restrictions of Theorem 17.1 one can show that 

/x(0: 8y) = dy, 
(18.2) y) y 

ju(0; hxy\ 52y; • • • ; 8ry) = - Tr(p, ôy, • • • , ôr y), 2 ^ r S ny 

where Tr(x, Ji, & , • • • , &•) is the polar of the homogeneous poly­
nomial Hr(^) defined by 

/ 1 0 ^ ffr(Ö = IV-XCS, € , - • • , € ; € ) — {r^ i (« , T(x, f, Ö, «, • • • , Ö 
( 1 8 . 3 ) v 

+ . . . +r r _ 1 (x ,^ , . . . , { ,r(« , {,©)} 
in terms of lower order T's. There are similar formulas for the dif­
ferentials of v{x) evaluated at x = p. For further results and details 
see Michal-Hyers [3]. 

The covariant differential of a scalar field valued or c.v.f. valued 
multilinear form in several contravariant vectors obviously retains 
its form as a functional of the multilinear form and its differentials 
and of the linear connection and its differentials. This is what we 
mean when we say that the covariant differential is a simultaneous 
differential invariant of the multilinear form and the linear connec­
tion. The first covariant differential is a first order simultaneous dif­
ferential invariant, while the successive covariant differentials are 
simultaneous differential invariants of higher order. 

There are other higher order simultaneous differential invariants, 
called extensions of the multilinear form, that are symmetric in the 
new increments. This is to be contrasted to the asymmetry of suc­
cessive covariant differentials (see, for example, formula (14.3)). 
These extensions of multilinear forms require the geometric space to 
be of a more restricted character in that their very definitions are in 
terms of normal coordinates. For example, the rth extension of 
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F(%> £i> ?2, • • • , £»•) is defined in normal coordinates y by 

tF(0, tfi, tfc, • • • , t à ; ôiy; ô*y; • • • \bry). 

The first extension, if it exists, coincides with the first covariant dif­
ferential. However, it must be borne in mind that the first covariant 
differential may exist and yet not be the first extension. 

Similar methods can be used to define a fundamental set of dif­
ferential invariants of a linear connection. Such differential invariants 
of the linear connection we call normal vector forms. I t is clear from 
their definition that the normal vector forms are c.v.f. valued multi­
linear forms in several contravariant vectors. If 

Ai(x, £1, £2, £3), A2(x, £1, &, £3, £4), • • • , Ar(x, £1, & , • • • , &+*) 

are the first r normal vector forms, then every differential invariant 
depending on a symmetric linear connection and its differentials up to 
the rth order can, by a very simple replacement process, be written as a 
functional of the first r normal vector forms. This is the reason why we 
called the set of normal vector forms a fundamental set of differential 
invariants. For further details we refer the reader to the Michal-
Hyers [3] paper, and especially to §§5, 6, and 7 of that paper. The 
explicit expression of the normal vector forms in terms of the sym­
metric linear connection and its differentials can be calculated readily 
with the aid of formulas (18.2) and the corresponding formulas for 
the differentials of v{x). 

IX. COVARIANT VECTORS AND A SPECIAL CLASS OF 

NORMAL COORDINATES 

19. Covariant vectors. The geometric objects studied so far have 
been scalars, scalar fields, contra variant vectors, contravariant vector 
fields, linear connections, scalar field, and c.v.f. valued multilinear 
forms in one or several contravariant vectors. The concept of a co-
variant vector, however, has not been used explicitly in any essential 
manner. There is a certain amount of arbitrariness in the choice of a 
definition for a covariant vector. We shall make a definition that 
seems natural, although not the most general, for some later develop­
ments that we now have in mind. To make this definition, we must 
restrict the Banach coordinate space T by postulating independently* 
of the Banach norm ||#|| of J1 a bilinear inner product [x, y] on T2 

to the real numbers with the following properties : 
(1) If [x, y] = 0 for all x t T, then ^ = 0. 
(2) If [x, y] = 0 for all y t T, then a = 0. 

* Rotations in such Banach spaces have been studied in Michal-Highberg-Taylor 

[1]. 
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We shall use the symbol E to designate such a space T. 
Unlike the situation in Hubert space, the adjoint of a linear trans­

formation in E is not necessarily defined throughout E, even though it 
always exists.$ This remark motivates then the following definition. 
A function T*(y) with argument and values in E will be said to be an 
adjoint (transformation) of a linear transformation T(x) on E to E if 

(1) T*(y) is linear throughout E; 
(2) [ r (*) f y]= [x, T*(y)]for all x, y z E. ^ 

Clearly an adjoint, if it exists, is unique (within the = relation of E). 
Some of the elementary properties of adjoint transformations are 
readily proved. See Michal [9], Michal-Hyers [4], as well as Michal-
Highberg-Taylor [ l ] . 

If then the adjoint x*(x\ rj) of the differential x(x; ôx) exists 
throughout the domain of definition of the transformation of co­
ordinates x = x(x), the transformation law of the components of a 
covariant vector § rj=x*(x; rj) is well defined. 

In order to treat differential invariants involving both covariant 
and contravariant vectors, it is clear that the theory in Chapter VIII 
on normal coordinates must be considerably modified and extended. 
One of the most difficult new problems, though trivial when the co­
ordinate space E is finite dimensional, is to prove the existence and 
differentiability of the adjoints of the differentials of the transforma­
tion to normal coordinates. 

20. Some fundamental existence theorems. The following exist­
ence theorem is of interest in itself, aside from its use in general dif­
ferential geometry. 

THEOREM 20.1. Let X be a neighborhood of a point XQ of the space E 
and let T(x, £, rj) be a function on XE2 to E, bilinear and symmetric 
in £, rj and satisfying the following conditions : 

(i) T(x, £, rj) is of class C(w) uniformly on XE2((0)i). 
(ii) The adjoint Yf2) (x, £, rj) exists and is of class C(n) uniformly on 

X £ 2 . ( ( 0 ) i ) -
(iii) The adjoint Y%)(x1 £, rj; X) exists and is of class C (n-1) uni­

formly on XE3((0)i). 
Let YQXO be the J, p range of definition of the solution ju(s£, P) 

(known to exist by Theorem 1.1 of Michal-Hyers [s]) of the differential 
system 

d2x / dx dx\ /dx\ 

(2o.i) _ T + r ( * , - , - 1 = 0, x(o) = p, ( - ) = £• 
ds2 \ ds ds/ \ds/o 

t Michal-Highberg-Taylor [ l ] . 
§ Michal [9]. 
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Then the "adjoint differential system" 

d2z* 

ds2 + z*(s, T*t)(ii, //, M'; X)) 

(20.2) + 2 [— s%, rt2)(/i, X, „'))] = 0, 

\ ^ /o s (o, x) = x, —-^ = - rm(P, x, Ö 

(20.3) 

dH 

Is* 

has a unique solution z* =^(s, £, £, X), which is of class C (n-1) in £, ƒ>, X 
uniformly on Y0XaE((0)i) for each s in I, where I is the interval 
0 g s ^ 1. Furthermore, the adjoint ix*3) (s£, p;\) of the solution n(s!-, p; X) 
of the differential system 

+ rOi, M', / ; z) + 2r (M, ̂ c ' ) = o, 

/dz(s, X)\ 

2(o,x) = x, ( — - ^ ) = - r ( / > , x , £ ) , 
\ aS /s=0 

where jn' = dn{s£, p)/ds, exists and is equal to yp(s, £, £, X). 

Let now the mappings of neighborhoods of the geometric space H 
and the postulates on coordinate systems be taken as in Chapter 
VIII , with the general Banach space replaced by the space E, and 
transformations of class K(m) replaced by transformations of class 
k{m). For the definition of transformations of class k(m) the reader is 
referred to Michal-Hyers [2, 4] . Let further x(P) be some allowable 
£(w+2) coordinate system, and assume that, for any point x of the 
coordinate domain of x(P)> the linear connection T(x, £i, £2) satisfies 
the following conditions : 

I. T(x, £i, £2) is a symmetric bilinear function of £1 and £2. 
II . T(x> £1, £2) is of class C(n) locally uniformly at x. 

I I I . The adjoint Tf2)(x, £1, £2) exists and is of class C(w) locally uni­
formly at x. 

IV. The adjoint T*é) (X, £1, £2; X) exists and is of class C(w-1) locally 
uniformly at x. 

The following key theorem can be proved with the aid of Theorem 
20.1. For details of proof and further developments see Michal-
Hyers [4]. 

THEOREM 20.2. Let g be any chosen point of the coordinate domain 2 
of an allowable k(n+2) coordinate system x(P) in which the above condi­
tions I-IV are satisfied by the linear connection T(x, £1, £2). Then there 
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exists a constant d>0 and a function h(p, x) of class C(w) uniformly on 
E2((q)2d) such thatj for any choice of p in E((q)d), the transformation 
y = h(pf x) with inverse x=fi(y, p) is of class &(n) for x z E((p)d) and 
defines a normal coordinate system y{P) with center Po = P(p). 

An important further use of normal coordinates will be made in 
the study of general projective geometry, general Riemannian ge­
ometry, and general conformai geometry. Compare the succeeding 
chapters. 

X. GENERAL PROJECTIVE DIFFERENTIAL GEOMETRY 

21. Projective change of connection. The differential equations of 
the paths in a differentiable manifold with a linear connection and 
with a coordinate space E that was employed in Chapter IX take the 
form (16.3) in a general parameter t, while in an affine parameter 5 
they take the form (16.4). The equations (16.3) have the advantage 
that they retain their form under a general transformation of the 
parameter /, while (16.4) retain their form under an affine transforma­
tion of the affine parameter s. 

One of the interesting questions that arises here is the following: 
what is the most general linear connection on the given differentiable 
manifold such that the paths determined by this linear connection 
are the same as the paths determined by the originally given sym­
metric linear connection? In other words, what is the most general 
transformation of linear connection {called projective change of connec­
tion) that leaves invariant the differential equations (16.3) of the paths} 
To answer this question it seems necessary to restrict the coordinate 
space E still further. 

The linear transformations in E form a new Banach space R whose 
norm function may be taken as the modulus of a linear transforma­
tion in E. In fact R is a normed ring with unit element. The bilinear 
ring product LiL2 is defined by the succession of two linear transfor­
mations in E, and the unit I of R is defined by the identical trans­
formation in E. 

We condition the normed ring R, and hence indirectly the space 
E, by the following postulate.! 

There exists a linear function [L]f called a contraction, on R to the real 
numbers with the properties: (1) [LiL2] = [L2Li]; (2) [iV(*)a] = N(a), 
where N(£) is linear on E to the real numbers. 

DEFINITION. A space E, whose normed ring R is so conditioned, will 
be called a space E with a contraction ring R. 

Î Michal [10]. 
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The following theorem answers the question raised above. 

THEOREM 21.1. The most general transformation of the linear con­
nection T(x, £1, £2), called a projective change of connection, that pre-
serves the equation (15.3) of parallelism and hence the corresponding 
equation (16.3) of paths, is given by 

(21. l) t r (* , £1, £2) = r (* , {1, £2) + *(*, £i)£2 + 0(«, £2)£i, 

where </>(x, £) is a?ry scalar field valued linear form in a contravariant 
vector £. 

22. Projective curvature form and projectively flat spaces. Let 
•£(#>£i>£2,£3) be the c.v.f. valued curvature form (see equation (14.4)) 
based on the symmetric linear connection T(x, £1, £2). Denote 
by B(x, £1, *, £2) the bilinear function of £1 and £2 whose values are 
in the contraction ring R and which corresponds to B(x, £1, £, £2) when 
considered as a linear function of £. Similarly denote by B(x, *, £1T £2) 
the function which has values in R and which is the correspondent of 
B(x, £, £1, £2) when considered as a linear function of £. With the aid 
of the contraction function [L] we can define 

3 ( M i , f c ) = [£ (* ,&,* ,&) ] 

(22.1) 0 (Mi , &) = *[*(*, *,&,&)] 

where I is the unit of R. 
By a simple argument, we find that B(x, £1, £2) and j3(x, £1, £2) 

are scalar field valued bilinear formst in the contravariant vectors £1 and 
£2. I t follows, therefore, that the form W(x, £1, £2, £3), called a pro­

jective curvature form and defined by 

W(x, £1? £2, £3) = B(x, £1, £2, £3) — j8(a?, £2, £3)£i 
v + I 

.„ ON 7 (*(*, £x, £8)£2 - £(*, £1, £2)£3) 
(22.2; y — 1 

~ 7 (0(*, £1, £2)£3 - fi(%, £1, £8)£2) 
*>z — 1 

f o r v = [7] 5* - 1, + 1, 

Î More generally, if T(x, fc, fc, • • • , £,_i, &, £»+i, • • • , £P) is a c.v.f. valued 
multilinear form in the £ contravariant vectors & , • • • , £*>, then [r(#, fr, £2, • • • , 
£*--i,*, £»*+i, • • - , &>)], the contraction of T(x, & , • • • , £P), considered as a linear 
function of £», is a scalar field valued multilinear form in the p— 1 contravariant vec­
tors £1, • • • , £,--i, fc+i, •••,&>. 
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is a c.v.f. valued trilinear form in the contravariant vectors £1, £2, £3. 
The following two theorems justify the terminology projective curva­
ture form. 

THEOREM 22.1. The projective curvature form W(x, £1, £2, £3) for 
v = [i] y£ — 1, + 1 is a projective differential invariant, that is, it remains 
invariant under a projective change of connection. 

A differentiate manifold with a symmetric linear connection will 
be said to be projectively flat if there exists a projective change of 
connection yielding a differentiable manifold with a vanishing curva­
ture form. 

THEOREM 22.2. Let H be a 3-differentiable manifold with a symmetric 
linear connection T(x, £1, £2) that satisfies the restrictions laid down in 
Chapter IX. Further, assume that the coordinate space is a space E with 
a contraction ring R, and that the functions T(x, *, £2), • • • , 
T(x, £1, £2; *) with values in R possess first differentials in x. Finally, 
we restrict ourselves to numerically valued linear f unctions l(x) on E that 
can be written as l(x) = [a, x], and assume that p=[l]j* —1, + 1 , + 2 . 
Then a necessary and sufficient condition that H be projectively flat 
(locally) is that the projective curvature form W(x, £1, £2, £3) vanish 
locally. 

The more difficult part of the proof of this theorem centers around 
the differential functional equation 

<t>(%, £1; £2) = 0 0 , r (a , £1, £2)) + 4>(x, £i)4>0, £2) 

(22 3) 1 2 
B(x, fc, {0 + 0(*, fc, {,). 

v — 1 vL — 1 
Equation (22.3), together with W(x, £1, £2, £s)=0, is shown to be 

equivalent to a completely integrable abstract Pfaffian differential 
equation. The existence of a <j>(x, £) is then shown with the aid of an 
existence theorem of Michal and Elconin [ l , 3] on abstract Pfaffian 
differential equations. 

X L GENERAL RIEMANNIAN DIFFERENTIAL GEOMETRY 

23. Element of arc length and abstract Christoffel symbols. A dif­
ferentiable manifold with a linear connection of special interest is a 
general Riemannian space whose coordinate space T is an abstract 
normed linear space E with an independently postulated inner prod­
uct [x, y]. See §19 of Chapter IX for the definition of a space E. 

DEFINITION. By a general Riemannian spaced with coordinates in an 

t Michal [11, 12]. See also Michal [6, 7] . 
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abstract space E we mean an m-differentiable manifold H with coordi­
nates in a space T such that 

(1) T is a space E and H has allowable k(m) coordinate systems^ 
(2) the differentials of the coordinate transformations possess ad-

joints with respect to the inner product [x, y] of E at each point of their 
domains of definition; 

(3) there exists a covariant vector field valued linear form, called a 
metric form, g(x, £) in a contravariant vector £ with the following proper­
ties at each point x of the coordinate domain of every allowable coordinate 
system : 

(3a) g(xf £) is differ entiable in x up to the pth order, where p <m, and 
where the pth differential is continuous in x; 

(3b) [fa g(x, £)] is positive definite in £; 
(3c) g(x, £) is a solvable linear f unction of £ with G(x, rj), say, as its 

inverse function ; 
(3d) g(xy £) is self-adjoint (so that [fa, g(x, fa)] is symmetric in fa 

and fa); 
(3e) the adjoint g&)(x, fa ôx) of the differential g(x, fa ôx) exists and 

is itself continuously differ entiable to the (p-l)st order (clearly 
g**)(x, h àx)=gf3)(xy Ôx; £)); 

(4) the element of arc length is defined by 

ds = [ôx, g(x, ôx)]112. 

The theory of a general Riemannian space we call a general Riemannian 
differential geometry. 

Define the function T(x, fa, fa) by 

(23.1) r(*,fa,fa) = G(#, 7 ( * , fa, fa)) 

where J 

(23.2) y(x, fa, fa) = {g(x, fa; fa) + g(x, fa; fa) - g%(x, fa; fa)}/2. 

It can be shown that T(x, fa, fa), so defined, is the component of a 
symmetric linear connection, called an abstract "Christoffel" symbol 
(of second kind). We shall call y(x, fa, fa) the "Christoffel" symbol of 
the first kind. 

Clearly the adjoint Tf2)(x, rj, fa exists § bilinearly in the covariant 
vector rj and contravariant vector £ and is given by 

f For their definition see Michal-Hyers [2, 4 ] , 
{ See Michal [6, p. 528] where this expression is given for the first time. 
§ In a general Riemannian geometry there thus exist two types of "linear con­

nection" : one is the abstract Christoffel symbol, and the other is represented by either 
one of its adjoints. See Michal [6, l l ] . 
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r î 2 ) 0 , 17, Ö = 7(2)(«,G(or, 77), £) 

(23.3) = U(*,G(*, r>); Ç) + *?»>(*, S;G(x, r,)) 

- g(x, ?;G(x, rf))}/2. 

Since T is a symmetric linear connection, we also have 

(23.4) rî,,^,*,*) = r?2)(*, *?,£). 

The transformation law for the abstract Christoffel symbol of the 
first kind Y(£I , £2) in the contravariant vectors £1 and £2 is found to be 

(23.5) y(x, £1, f2) = x*(x; y(x, &, &)) + #*(#; g(x, x(x; fr; &))). 

The transformation laws for the adjoints of the two abstract Christof­
fel symbols are derived easily from the corresponding transformation 
laws of the abstract Christoffel symbols. For example, 

(23.6) r?2)(£, rj, ?) = x*(x; r?2)(ff, 1;, £)) + **2)(*; 17; Ö, 

and 

(23.7) 7(2)(^, {1, £2) = x (x; 7(2)(*, £1, &)) + #(2)(x; g(x, £i); £2). 

The following fundamental theorem and its important corollary 
hold good. 

THEOREM 23.1. A necessary and sufficient condition that the covariant 
differential g(x> £|S#) of a general Riemannian metric g(x, £) vanish, 
where 

g(x} £ | ôx) = g(x, £; Ôx) - g(a, L(x, £, 5*)) - £?2)(#, g(s, £), M 

is eased on any linear connection L(x,%,8x) with an adjoint 
L(2)(x1rj,ôx)1 is that the symmetrized linear connection S(#,£i,ê2) 
= {£(ff,£i, &)+£(# , £2, êi)}/2 be uniquely determined by the metric 
g(x, £) and the torsion form 

0(*, *i, £2) = {£(*, fi, £2) - L(x, £2, fi)}/2 

6;y means of the formula 

S(x, fc, fc) = r (» , fx, £2) + 0(*, &, &) 

(23.8) +G(x,Qw(x,Zug(x,h))) 

+ G(x, Q*s)(x, £2, g(*, {1))), 

w/fore T(x, £1, £2) w /^e abstract Christoffel symbol of the second kind 
based on the general Riemannian metric g(x, £). 
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COROLLARY, f A necessary and sufficient condition that the covariant 
differential g(x, £| ôx) of a Riemannian metric g{xy £) based on a sym­
metric linear connection L(x, ft, ft) vanish is that L(x, ft, ft) be the 
Christoffel symbol of the second kind T(x, ft, ft) based on the given 
g(x, £)• 

In other words, in a general Riemannian space with metric g(x, £), 
the functional equation 

(23.9) g(x, £; ox) = gO, L(x, £, ox)) + L*2)(x, g{xy £), &%) 

has a unique symmetric solution given by the Christoffel symbol of 
second kind L(x, ft, ft) = T(x, ft, ft) of the general Riemannian space. 
Conversely, if L(x, £, bx) =T(x, £, ôx), then the metric g(x, £) satisfies 
the abstract Pfaffian differential equation (23.9). J 

24. Abstract Riemann-Christoffel curvature form. If we denote the 
c.v.f. valued curvature form based on the abstract Christoffel symbol 
r (# , ft, £2) by B(x, ft, £2, £3), then it is clear from Theorem 14.2 that 
in general Riemannian geometry successive covariant differentiation 
is not a commutative operation (except in a locally flat case, that is, 
when B(x, ft, ft, £3) = 0 in each coordinate domain and for arbitrary 
contravariant vectors ft, £2, £3), and in fact 

(24.1) ft> I Ôxx I ô2x) - £(# I 02x I Ô!x) = B{x, £(x), M , hx) 

for arbitrary differentiate c.v.f. £(x). 
Define the abstract Riemann-Christoffel curvature f or m R(x, ft, ft, £3) 

by 

(24.2) *(*, ft, ft, ft) = «(*, £(*, ft, ft, ft)). 

Clearly R(x, ft, ft, ft) is a cov.v.f. valued trilinear form in the con­
travariant vectors ft, ft, ft. 

THEOREM 24.1. The abstract Riemann-Christoffel curvature form can 
be written in the following useful manner: 

R(%, £1, £2, £3) = {g(x, ft; ft; ft) + g*w(x, ft; ft; ft) 

- g(9)(x, £l5 £2; £3) - g(x, £3; £i; £2)}/2 
(24.3) * 

+ 7<2)(*, G(s, y(x, ft, ft)), £2) 

- 7(2)(*, G(a, ?(*> £1, £2)), £3). 

t Michal [6, p. 528]. 
Î The Pfaffian equation (23.9) is not, as it stands, a total differential equation of 

the type studied in Michal-Elconin [3]. 
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THEOREM 24.2. The following identities are satisfied by the abstract 
Riemann-Chris toff el curvature form 

(24.4) 

£ ( * , f i , f2, fa) = - * ( M i , f c , f c ) , 

R(*> f i , f 2, &) + * ( * , fa, f i , f 2) + R(x, f 2, ft, fi) = 0, 

•£(*, f i , &, fs) = - R**)(x, f i , f2, f3), 

•#(*, fb f2, fs) = **8)(*, fa, f2, f i ) . 

25. Geodesies, parallel displacement and abstract normal coordi­
nates. The extremal curves for the generalized calculus of variations 
problem 

mm. 

are found by taking a family of curves 

(25.2) x(t) = x{t) + ea(t)f, a(tQ) = a(h) = 0, 

where a(t) is a differentiable real function and ^ is a Banach variable. 
On extending the classical methods in the obvious way we find that 
the extremal curves, called geodesies, for the length integral (25.1) 
satisfy the abstract Euler-Lagrange differential equation 

d2x(s) / dx dx\ 
<253) -zr- + ,Y1*'*)-0 > 

where T(x, fi, f2) is the abstract Christoffel symbol of the second kind 
(defined in (23.1)) and 5 is the arc length parameter defined by 

1/2 

-Œ<«m* It follows immediately from (25.3) that a geodesic is an autoparallel 
curve, that is, the tangent vectors dx/ds of a geodesic form a parallel 
vector field with respect to that geodesic. 

With the aid of Theorem 20.2 and the properties of functions of 
class C(TO) locally uniformly at x, the following existence theorem on 
abstract normal coordinate systems in a general Riemannian space 
can be established. 

THEOREM 25.1. Let 2 be the coordinate domain of an allowable 
£(n+2) coordinate system x(P) in a general Riemannian space with metric 
form g{x, f). If g(xà f) and g*z)(x, fi; f2) are, respectively, of class 
C(w+1) and C(w) locally uniformly at each x t 2 , then the hypotheses of 
Theorem 20.2 are satisfied when we take the linear connection T(x, fi, f2) 
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to be the abstract Chris toff el symbol (23.1) of our Riemannian space. 
The conclusions of Theorem 20.2 hold good, then, for the case on hand 
under the hypotheses of the present theorem. 

Since the abstract Christoffel symbol satisfies J the identity 
+rCy, y, y)=0in a, neighborhood of the origin of a normal coordinate 
system y{P)y the following results amongst several others can be 
proved. 

COROLLARY. The metric form g(x, £) of a general Riemannian space 
satisfies the following differential identities in a neighborhood of the 
origin of a normal coordinate system y(P) : 

H(y, y; y) = o, H%)(y, y\ y) = o. 

26. Riemannian curvature in a general Riemannian space. § Let Xi 
and X2 be the components of two contra variant vectors (directions). 
The Riemannian curvature K at a point of a general Riemannian 
space with respect to the "orientation" Xi, X2 is defined by 

[Xi, R(x, X2, X2, Xi)] 
(26.1) K 

[Xi, g(x, Xi)][X2, g(x, X2)] - [Xi, g(x, X2)]
2 

where g(x, £) is the metric form of the general Riemannian space 
and R(x, £1, £2, £3) is the corresponding abstract Riemann Christoffel 
curvature form (see §24). 

The following theorem furnishes an alternative definition of the 
Riemannian curvature K. 

THEOREM 26.1. The Gaussian curvature at a point P of the two dimen­
sional geodesic surface S determined by the orientation Xi, X2 at P is 
equal to the Riemannian curvature K given in (26.1). 

In the proof of this theorem we make special use of Theorem 25.1 
on abstract normal coordinates. The first fundamental form of S 
induced || in S by the enveloping general Riemannian space is 

(26.2) bat(u\ u2)duaduP, 

where 

t See Michal-Hyers [3, p. 166]. 
§ Michal [12]. 
|| These considerations foreshadow a general theory of spaces immersed in other 

spaces. 
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and y is an abstract normal coordinate of the general Riemannian 
space with origin at the point P . On computing the Gaussian curva­
ture of S, 

; 
^11^22 "~ #12 

we find it equal to the K given in (26.1) and computed for abstract 
normal coordinates y. Hence (26.1) holds in a general coordinate 
system. 

THEOREM 26.2. A necessary and sufficient condition that the Rieman­
nian curvature K(x) at a point of a general Riemannian space be inde­
pendent of the orientation Xi, X2 is that the metric form g{x, £) satisfy 
the abstract differential equation at that point 

(26.3) *(*,&,&,&) = K(x){[Sug(x,h)]g(x,h) - [fc,*(Ma) ]*(*,&)} 

for arbitrary contravariant vectors £1, £2, £3. 

27. General Riemannian spaces of constant Riemannian curva­
ture.* If the Riemannian curvature K is the same for all points 
(locally) and for all orientations, then the general Riemannian space 
will be referred to as of constant Riemannian curvature (locally). 

The existence of general Riemannian spaces with constant Rieman­
nian curvature follows immediately from the following theorem. 

THEOREM 27.1. Let /(£) be a solvable self-adjoint linear transforma­
tion such that [£, /(£)] is positive definite, and let 

KO 
(27.1) g(x,S) = 

l+~ [*,/(*)]}' 
4 

Then a general Riemannian space with element of arc length based on the 
special metric form g(x, £) given in (27.1) is a general Riemannian 
space with a constant Riemannian curvature KQ. 

If the Banach coordinate space £ of a general Riemannian space 
of constant Riemannian curvature K 7e 0 is taken to be the usual 
w-dimensional euclidean arithmetic space, then the general Rieman­
nian space is locally one of the classical finite dimensional non-
euclidean geometries usually associated with the names of Riemann 
in the case K>0 and with those of Bolyai and Lobatschefski in the 
case K<0. 

Amongst the many new infinitely many dimensional examples of 

* Michal [12]. 
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general Riemannian spaces with constant Riemannian curvature, 
there are two that are of special interest.* One is obtained by taking 
the Banach coordinate space E to be Hubert space with [xf y] as the 
Hilbert space inner product. The other interesting infinitely many 
dimensional example is obtained by taking E to be the space of real 
continuous functions on a real interval (a, b) with the integral over 
(a, b) of the product of two functions as the inner product of these 
functions, and by taking 

(27.2) * . - _ W»*-)1 + M * » * 

1 + ~~ (/«(*«)• + lafiX"afi)Y 

where la9^0 and lap are real continuous functions of the real variable 
a and the real variables a and /?, respectively, and where the Fred-
holm determinant Dll^/l^^O. In (27.2) we also understand that a 
repetition of a real variable in a term, once as a subscript and once 
as a superscript, denotes Riemann integration with respect to that 
variable over the interval (#, b). See §4. 

Up to the present, the coordinate space E of our Riemannian 
geometries was not required to be space E with a contraction ring f R. 
One of the most interesting theorems in all of general differential 
geometry seems to depend in an essential manner on the fact that the 
coordinate space is a space E with a contraction ring R. The theorem 
in question is as follows. 

THEOREM 27.2.-4 general Riemannian space that satisfies the follow-
ing conditions is a space of constant Riemannian curvature: 

(1) the coordinate space is a space E with a contraction ring R; 
(2) the contraction [i] of the unit element I of the normed ring R is 

different from 1 or 2 ; 
(3) the Riemannian curvature at each point is independent of the 

orientation (Xx, X2). 

I t is of some importance to observe that the condition [/] = 1 or 2 
does not necessarily entail a finite dimensional Riemannian space. 
In fact, there exist infinitely many dimensional spaces for which re-

* Michal [l2]. We mention here in passing the important subject of general 
Riemannian geometry with complex Banach coordinates and a Hermitian differential 
metric. Infinite dimensional spaces of this type (especially those of constant Riemann­
ian curvature) may be useful in a more satisfactory treatment of various physical 
theories such as the quantum theory—a mere speculation perhaps, but worthy of 
serious consideration! 

t See §20 for the definition of such a coordinate space. 
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striction (2) of the above theorem is not satisfied. Furthermore, there 
exist infinitely many dimensional general Riemannian spaces of con­
stant Riemannian curvature for which restrictions (1) and (3) of the 
above theorem are satisfied but (2) does not hold—there are cases 
where [/] = 1 as well as cases where [/] = 2. 

We mention in passing the important subject of general Riemann­
ian spaces of constant Riemannian curvature considered as spaces 
immersed f in composite abstract euclidean spaces with coordinates 
(#, /) , where x is a Banach variable and tis a real variable. 

28. General conformai differential geometry.$ We have already 
had examples of conformally flat general Riemannian spaces, that is, 
spaces whose element of arc length ds is the product of a scalar field 
and the element of arc length of an abstract euclidean space. The 
spaces whose metric form g(x, £) is given by (27.1) are conformally 
flat. 

The theory of conformally equivalent general Riemann spaces that 
have coordinate spaces E with a contraction ring R centers around a 
c.v.f. valued trilinear form C(x, £i, £2, £3) in the contravariant vectors 
£i> £2, £3. We call this form the conformai curvature form. It is a con-
formal differential invariant, for it retains its form as a functional of 
g(x, £) and its first two differentials under a differentiable conformai 
transformation 

g'(M) = x(*)g(M), x(*) >o. 
Its definition is as follows: 

1 . 
C(x, fc, fc, fc) = B(x, fc, £2, £3) + - { - R(x, £1, &){, 

v— 2 
+ * (* , fc, £2)£3 - [fc, g(x, *i)]G(*, * (* , &)) 

+ [ & g ( M i ) ] G t o * ( M . ) ) } 

+ 7 — V r — ^ {fe' s(*> &)& - fe> ̂ x> &)& 1 > 
0 - 1)0 - 2) 

where .B(#, £1, £2, £3) is the curvature form based on the abstract 
Christoffel symbol T(x, £1, £2) and J 

* (* , &, £2) = [B(x, fc, *, &)] = [?i, R(x, &)], 

*(*) = [G(*,*(*, * ) ) ] , * = [ / ] ^ 1 , 2 . 

t Michal [12]. 
Î Michal [11, 12]. 
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