ON NON-BOUNDARY SETS*

A. D. WALLACE

The purpose of this note is largely methodological; namely, to complete the triology of dense, boundary, and nondense sets by adding non-boundary sets.

We adhere to the nomenclature of Kuratowski's $Topologie^{\dagger}$ except as noted. In particular, we suppose that S is a nonvacuous space satisfying his axioms of closure, and we write $F(X) = \overline{X} \cdot \overline{CX}$ and $X^0 = C\overline{CX}$ where CX = S - X. If the set X has the property P, we write X^P or $(X)^P$, and in the contrary case X^{CP} or $(X)^{CP}$.

A set is *dense* if its closure is the space; *boundary* if its complement is dense; *nondense* if its closure is boundary; and finally, *non-boundary* if its complement is nondense. We designate the properties by D, B, ND, and NB, respectively.

THEOREM. The following conditions are necessary and sufficient in order that a set be

- I. Dense: The interior of its closure is the space; the boundary of its complement is the closure of its complement; its complement is a boundary set; its closure is a non-boundary set.
- II. A boundary set: The closure of its interior is null; its boundary is its closure; its complement is dense; its interior is nondense.
- III. Nondense: The interior of its closure is null; the boundary of its closure is its closure; its complement is a non-boundary set; its closure is a boundary set.
- IV. A non-boundary set: The closure of its interior is the space; the boundary of the closure of its complement is the closure of its complement; its complement is nondense; its interior is dense.

We summarize this in the following table of equivalences. The Roman numerals correspond to the statements above, and each statement in a row is equivalent to every other statement in that row.

The proofs of these statements are as follows: Column 2 is a formulation of the definitions. In column 3 statement I 3 follows from I 2 since $S^0 = S$; II 2 is equivalent to $X^0 = 0$, which is clearly the same as II 3; III 3 is the complement of III 2; IV 3 is IV 2.

As to column 4, we have for I 4

$$(\overline{X} = S) \to (\overline{X} \cdot \overline{CX} = \overline{CX}) \to (F(CX) = \overline{CX}).$$

^{*} Presented to the Society, February 25, 1939.

[†] C. Kuratowski, Topologie I, Warsaw, 1933.

Also $\overline{X} \cdot \overline{CX} = \overline{CX}$ is the same as saying that \overline{CX} is a subset of \overline{X} . But $C\overline{X} \subset CX \subset \overline{CX} \subset \overline{X}$, or $C\overline{X} = 0$. The remaining statements in this column follow from this one using only the definitions.

	1	2	3	4	5	6
I	X^D	$\overline{X} = S$	$\overline{X}^0 = S$	$F(CX) = \overline{CX}$	$(CX)^B$	$(\overline{X})^{NB}$
II	X^{B}		$\overline{X^0} = 0$	$F(X) = \overleftarrow{X}$	$(CX)^D$	$(X^0)^{ND}$
III	X^{ND}	$\overline{C\overline{X}} = S$		$F(\overline{X}) = \overline{X}$	$(CX)^{NB}$	$(\overline{X})^B$
IV	X^{NB}	$\overline{CCX} = S$	$\overline{X^0} = S$	$F(\overrightarrow{CX}) = \overrightarrow{CX}$	$(CX)^{ND}$	$(X^0)^D$

Column 5 can be deduced from column 4 and the definitions. Statement IV 6 is the same as IV 2; III 6 is II 2 with X replaced by \overline{X} ; for II 6 we have

$$(X^0)^{ND} \equiv (\overline{CX^0} = S) \equiv (\overline{\overline{CX}} = S) \equiv X^B;$$

the proof of I 6 is similar.

We have the following theorem giving relations between the various properties:

THEOREM. If a set is a non-boundary set, it is not a boundary set; if it is not a boundary set, it is not nondense; and if it is closed and not nondense, it is not a boundary set. If a set is a non-boundary set, it is dense; if it is dense, it is not nondense; if it is open and dense, it is a non-boundary set.

These results may be seen easily from the appended diagram, the arrow indicating the direction of implication. The proofs of the state-

$$\begin{array}{c}
CB \longleftrightarrow CND \\
\uparrow & closed \\
\downarrow & open \\
NB \longleftrightarrow D
\end{array}$$

ments are as follows: $X^{NB} \rightarrow X^{CB}$ from IV 3 and II 3; $X^{CB} \rightarrow X^{CND}$, from II 2 and III 2; X closed and not nondense $\rightarrow X^{CB}$ in the same manner; $X^{NB} \rightarrow X^D$, from I 2 and IV 3 since $X^0 \subset X$; X open and dense $\rightarrow X^{NB}$, in a similar way; $X^D \rightarrow X^{CND}$, from I 3 and III 3.

The following results are typical of non-boundary sets.

A necessary and sufficient condition that X be a non-boundary set is that X be dense and the boundary of X be nondense.

For we have

$$X^D \to (C\overline{X} = 0) \to (\overline{C}\overline{X} = 0)$$

and

$$F(X)^{ND} \to (C[\overline{CX} + \overline{X^0}] = 0) \to (\overline{X^0} = S).$$

Conversely,

$$(\overline{X^0} = S) \to (\overline{CX} + \overline{X^0} = S) \to (F(X)^0 = 0) \to F(X)^{ND}.$$

The product of a countable collection of non-boundary sets is a residual set; that is, the complement of a set of the first category.

For if X is such a set, then CX is the sum of a countable collection of nondense sets by IV 5.

Every dense G, is residual.*

In fact, if $X = \prod X_n$, $X_n = X_n^0$, then each X_n is a non-boundary set because

$$S = \overline{X} \subset \overline{X_n} = \overline{X_n^0}$$
.

In a complete metric space the product of a countable collection of non-boundary sets is not vacuous.

This is a classic theorem of R. Baire.

THE UNIVERSITY OF VIRGINIA

^{*} See Kuratowski, loc. cit., p. 206, Theorem V 2. I owe this reference to a referee.