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p2, - - - , p7, and of orders 48, 128, and 336 at A, B, and C, respec­
tively; and so on. 
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A NOTE ON THE REDUCTION OF GENTZEN'S 
CALCULUS LJ* 

H. B. CURRY 

The reduction given by Gentzenf of his calculus LJ to the modi­
fied Heyting calculus LHJ is somewhat involved because he reduces 
everything to the axioms without assuming any knowledge of the 
calculus. By the use, however, of certain general theorems it is pos­
sible to simplify the reduction. The purpose of this note is to present 
an alternative reduction based on this principle. Although this new 
reduction may, if all the assumptions used are proved in detail from 
the axioms, conceivably be longer than Gentzen's, yet the formulas 
and principles established at the beginning (in §§1-4 below) are for 
the most part well known (or a t least of some interest on their own 
account), and in terms of these the reduction (in §5) is almost im­
mediate. 

The new method has the further merit of showing, if we take the 
axioms of LHJ as a basis, that the schemes for implication follow 
from the axioms for implication onlyî and that those for conjunc­
tion, negation, and the quantifiers, respectively, involve only the 
axioms for implication and those for the operation concerned.§ It 

* Presented at a joint meeting of the Society and the Association for Symbolic 
Logic, December 29, 1937. 

t G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische Zeit-
schrift, vol. 39 (1934), pp. 417-428. 

J The scheme "Verdiinnung im Sukzedens" is essentially a scheme for negation. 
§ This statement requires that the formula 1.42 (below) be postulated as axiom 

of L H J ; to derive 1.42 from LHJ as it stands requires properties of conjunction. 



19391 GENTZEN'S CALCULUS LJ 289 

then follows from Gentzen's principal theorem that if a formula can 
be established in the Hey ting calculus at all, it can be established 
on the basis of those axioms of the calculus LHJ which concern 
implication and the other operations, if any, which actually appear 
in the formula, f 

The notation of this paper is the same as Gentzen's except as 
follows: For conjunction A will be used instead of &; the usual no­
tation (x) will be used for the universal quantifier; and ordinary 
(italic) letters, instead of German ones, will be used for unspecified 
expressions of the calculus. On the use of dots see my paper On the 
use of dots as brackets in logical expressions.% Certain formulas and 
theorems which are not necessary for the immediate purpose are 
preceded by *; some of these are useful for certain generalizations 
mentioned at the end. 

1. Preliminary formulas and principles. The first step is to derive 
the following formulas and principles: 

1.1. Properties of implication. 
A, ADB 

1.10. — 
B 

*1.11. AD A. 
1.12. AD . BDA. 

1.13. AD . ADB :D : ADB. 

1.14. AD . BDC :D: BD . ADC. 

1.15. BDC .D : ADB .D . ADC. 

1.16. ADB .D : BDC .D . ADC. 

ADB, BDC 1.17. 
ADC 

1.2. Properties of conjunction and alternation. These are given, 
partly in dual form, as follows: 

1.21. AAB .D . A, AAB .D . B; B .D . AvB, A .D . AvB. 
A,B 

1 T ? 
l . Z Z , 

AAB 
1.23. CDA . 

ADC , 
A 

. A 

C D B : D : C . D . A A B, and 
BDC :D : AvB .D . C. 

f This result appears to be generally known; but I am acquainted with no pub­
lished proof of it. For partial results of the same nature see D. Hubert and P. Bernays, 
Grundlagen der Mathematik, vol 1, 1934, p. 71; also I. Johansson, Compositio Mathe­
matica, vol.4 (1937), p. 131. Added in proof: See also M. Wajsberg, Untersuchungen 
Uber den Aussagenkalkul von A . Heyting, WiadomoSci Matematyczne, vol. 46 (1938), 
pp. 45-101. 

t Journal of Symbolic Logic, vol. 2 (1937), pp. 26-28. 
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4.24. 
ADB BDA 

AAC.D.BAC' BVC.D.AvC 
ADB BDA 

CAA . D.CAB CVB . D.CvA 

*1.25. AD . BD . AAB. 
*1.26. A .A.ADB.D.B. 

*1.3. Formal algebraic properties of A and v , / te / is, tóe commuta­
tive, associative, and distributive laws and the laws of tautology. 

1.4. Properties of quantifiers. 
1.40. If Fa holds for a free variable a not in ƒ?, then (x)Fx holds. 
1.41. (x)Fx. D .Fa, and Fa. D .(3X)FX. 

1.42. If x does not occur in A, 

(x) . A DFX : D : A . D . (x)Fx, (x) . FXDA : D : (Bx)Fx . D . A. 

1.5. Properties of negation. 

1.51. AD . l i D ^ . f 
T 

1.52. 

1.53. 

i4 D - i T . D . iA 

T 

-iT .D . A 
*1.54. ADB . D . I 5 D I A 

2. A general substitution theorem. Using these we may, following 
S. MacLane,$ prove a general substitution theorem as follows: 

2.1. First, let us say that an operation 0 on A is positive when 

ADB 

<I>AD(I>B 

is a valid scheme, negative when 

ADB 

<j)BD(j>A 

f 1.51 is a weaker form of AD ,-iADB, which is essentially equivalent to 1.53 
(and, by 1.14, is equivalent to the axiom -\A . D .ADB). However, 1.51 is true in 
the Minimalkalkul of Johansson (Compositio Mathematica, vol.4 (1936), pp. 119-136), 
while the stronger principles are not. Hence I shall use the stronger principle 1.53 
only in the derivation of the scheme DS (5.43) where 1.51 does not suffice. This 
establishes all the schemes except DS for the calculus LM (Johansson, loc. cit., §5). 

t Abgekürzte Beweise im Logikkalkul, Inaugural-dissertation, Göttingen 1934, 
p. 28 ff. A similar theorem appears in J. Herbrand, Recherches sur la Théorie de la 
Démonstration, Warsaw, 1930, §3.2. 
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is a valid scheme. Then by 1.15, 1.24 the operations Co ,f C A , A C, 
C v , v C are positive; on the other hand by 1.16, 1.54 DC and 
i are negative. J 

2.2. Suppose now we have an operation \p which is compounded 
of certain operations fa, fay * • • , <t>n in the sense that 

iM = *«(*«-i(- * ' (<M) • • • ) ) • 

Then if each of the <£» is either positive or negative, \p will be positive 
or negative according as the number of negative <£'s is even or odd. 
(This is readily proved by induction.) 

2.3. Hence suppose that we have a provable formula which is 
constructed from a particular instance of a formula A by the opera­
tions listed in 2.1 ; then if the number of negative operations is even, 
that particular instance of A may be replaced by any B such that 
A DB holds; if the number of negative operations is odd, it may be 
replaced by any C such that Co A holds. 

3. Further properties of fa Let us now consider two further prop­
erties of an operation <t> as follows : 

I. (jyAA^B.-o. <J>(AAB). 

II . (x)4>(Fx) . D . <i>((x)Fx). 

Concerning these we have the following theorems : 
3.1. If the <j>i of 2.2 are all positive and have property I, then <f> 

also has property I. 
PROOF. Let fa be defined by 

faA = <M> tk+iA = ^b+iGM). 

Then fa has property I. Suppose that fa does; then by 1.1, and since 
0&+i has property I, 

\l/k+iA A \l/k+\B . D . (frk+iixl/kA) A(t>k+i(ypkB) 

. o . <l>k+i(\pk(A A B)) 

since fa has property I and fa+x is positive. The transitive property of 
3 holds by 1.17. Hence fa+i has property I, and the theorem follows 
by induction. 

f By this I mean the operation converting A into CD A, and similarly for the 
other cases. The C's may be different in the different instances of the operators. 

t The fact tha t n is a negative operation is not used in establishing the schemes 
in §5 below. Hence 1.54 is marked with *; similarly for 1.24. 
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3.2. If the <j>i of 2.2 are ail positive and have property II , then \f/ 
also has property II . (The proof is similar to that of 3.1.) 

3.3. In the following we shall need only the special case of the fore­
going theorems where <fii is Ci 3 , with the additional proviso, in the 
case of II , that Ci does not contain x. In this case the hypotheses 
regarding the <fii are satisfied by 1.23 (in case I) and 1.42 (in case II). 

4. Chain implications. Concerning formulas of the form 

(1) AID . A2? . - - 3 . AnDB 

we have the following theorems : 
4.1. From the axioms for implication (1.1) it follows that the Ai 

may be permuted in any manner, that repetitions may be cut out, 
and that new A's may be inserted at pleasure. 

*4.2. From the axioms for implication and conjunction, it follows 
that (1) is equivalent to 

(2) A±AA2A • • • AAn . 3 ,B. 

(The proof would require some of the starred propositions of §1.) 

5. Derivation of the schemes. Suppose now that we replace the 
sequence 

(3) AhA2)- • • ,An->B 

of Gentzen by the corresponding formula (1) of 4.1 ; with the proviso 
that where Gentzen has a sequence with a void consequent, a conse­
quent A, where A is ^ T and T is some provable formula, must first 
be supplied. Then the limitations of the calculus LJ insure that every 
sequence of an "LJ Herleitung" is of the kind just considered. We 
shall now see that Gentzen's schemes go over into valid principles of 
inference in the calculus LHJ. In this deduction I shall use D for 
"Verdünnung," Z for "Zusammenziehung," and T for "Vertau-
schung." Then the schemes are established as follows: 

5.1. Schemes for 3 . 
5.11. DA, ZA, TA, FES by 4.1. 
5.12. Schnitt by 2.3. 
5.13. FEA thus: by induction and 1.15, 1.17, 

AD J5. D : C I D . C 2 D . - - • o .Cm*A . 3 : C i 3 . C 2 3 . • • • 3 .C m 3J3 . 

Hence if G 3 . C2 3 . • • • o . Cm ^>A holds, we have, by 1.14 and 1.10, 

A D B . 3 . d D . C2 3 . • • • 3 . Cm 3 B. 

The scheme is now reduced to Schnitt. 
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5.2. Schemes f or A and v . 
5.21. U E S b y 1.23, 3.1, 3.3. 
5.22. OEA by 1.23 immediately. 
5.23. UEA and OES by 1.21 and 2.3. 
5.3. Schemes f or quantifiers. 
5.31. A E S b y 1.40, 3.2, 3.3. 
5.32. E E A b y 1.40, 1.42, 1.10. 
5.33. AEA and EES (dually) by 1.41 and 2.3. 
5.4. Schemes for negation. 
5.41. N E A t h u s : 

Ci 3 . C2 3 . • • • 3 . Cm 3 A 
(1.51, 2.3) 

Ci 3 . C2 3 . • • • 3 . C m 3 . i i D A 
(4.1) 

iA 3 . Ci 3 . C2 3 . • • • 3 . Cm 3 . A. 

5.42. NES thus: 

Ao . C i 3 . C 2 3 . • • • 3 . C w 3 -iT 
(4.1) 

C i 3 . C 2 3 . . . • 3 . C m 3 . ADIT 
— (1.52, 2.3) 

C i 3 . C 2 3 . . - . . C m 3 . -i A. 

5.43. D S b y 1.53, 2.3. 

6. Conclusion. It may be worth remarking that by these same 
methods many of Gentzen's schemes may be established without the 
restriction to not more than one element in the consequent; the con­
sequent must then be taken as a logical sum. In fact by the use of the 
formulas marked with a * this can be done for all the schemes which 
do not involve quantifiers except NES and FES.f These schemes are 
in general invalid. NES, in fact, leads to the law of excluded middle 
(Gentzen, loc. cit., p. 193) ; while FES leads (for void T) to the scheme 

A .3.CvB 

C.3 . AvB ' 

which is not valid. 

THE PENNSYLVANIA STATE COLLEGE 

f In the minimal calculus the generalized NEA is also invalid. 


