
GENERALIZED REGULAR RINGS* 

N. H. McCOY 

1. Introduction. An element a of a ring 9Î is said to be regular if 
there exists an element x of dt such that axa = a. A ring 9î with unit 
element, every element of which is regular, is a regular ring>\ In the 
present note we introduce rings somewhat more general than the 
regular rings and prove a few results which are, for the most part, 
analogous to known theorems about regular rings. J 

Let 9? denote a ring with unit element. If for every element a of 9Î 
there exists a positive integer n such that an is regular, we shall say 
that 9Î is w-regular. In general, the integer n will depend on a. If, 
however, there is a fixed integer m such that for all elements a of 9Î, 
am is regular, we may say that 9î is m-regular. In this notation, a 
regular ring is 1-regular. 

An important example of a x-regular ring is a special primary ring, 
that is, a commutative ring in which every element which is not nil-
potent has an inverse.§ I t will be seen below that in the study of 
7r-regular rings the special primary rings play a role similar to that 
of the fields in the case of regular rings. 

2. Theorems on 7r-regular rings. Let 9Î be a x-regular ring, and 
3 its center, that is, the set of all elements commutative with all ele­
ments of 9î. We now prove the first theorem: 

THEOREM 1. The center of a w-regular ring is w-regular. 

If a z £> there exists an n such that for some element x of 9Î, 
anxan = an. Let y = a2nx3. Then, by a trivial modification of von Neu­
mann's proof of the corresponding result for regular rings, || it follows 
that y is in 3 and that anyan = an. Hence S *s ^-regular. 

* Presented to the Society, September 6, 1938. 
f J. von Neumann, On regular rings, Proceedings of the National Academy of 

Sciences, vol. 22 (1936), pp. 707-713. 
t In addition to von Neumann, loc. cit., see also a paper by the present author 

entitled Subrings of infinite direct sums, Duke Mathematical Journal, vol. 4 (1938), 
pp. 486-494. Hereafter this paper will be referred to as S. 

§ See W. Krull, Algébraische Theorie der Ringe, Mathematische Annalen, vol. 88 
(1922), pp. 80-122; R. Hölzer, Zur Theorie der primâren Ringe, ibid., vol. 96 (1927), 
pp. 719-735. A ring is primary if every divisor of zero is nilpotent, that is, (0) is a 
primary ideal. 

|| Loc. cit., p. 711. 
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I t is a familiar result* that a ring with unit element is reducible f 
if and only if its center is reducible. We shall use this fact to establish 
the following theorem : 

THEOREM 2. A w-regular ring is irreducible if and only if its center 
is a special primary ring. 

In view of the remark just made, we only need to show that the 
commutative 7r-regular ring 3 is irreducible if and only if it is a spe­
cial primary ring. 

I t is easy to see that a special primary ring 3 is irreducible. For if 
3 is the direct sum of two proper ideals, and 1 =£1+02 is the corre­
sponding decomposition of the unit, then e ^ O , e? = eiy (i = l, 2), 
e&2 = 0. Thus ei can be neither nilpotent nor have an inverse, in viola­
tion of the definition of a special primary ring. 

Suppose now that 3 is an irreducible commutative 7r-regular ring, 
and that z is any element of 3 which is not nilpotent. We shall show 
that z has an inverse. For some positive integer n, there exists an x 
in 3 such that xz2n = zn. Now xzn?^0f as otherwise we should have 
zn = 0. Let ei = xzn, £2 = 1 —ei. Then it is easy to verify that e^ = e^ 
61̂ 2 = 0. If Si denotes the ideal of all elements of 3 of the form ce^ 
0 t 3> (*'= 1» 2), then 3 is the direct sum of the ideals 3 i and 32- Since 
3 i 9e0, our assumption that 3 is irreducible requires that 32 = 0. Thus 
62 = 0, which implies that z has the inverse xzn~x. 

We now prove the following theorem : 

THEOREM 3. In a commutative ir-regular ring 9?, every prime ideal 
is divisorless. 

Let p be an arbitrary prime ideal in 9Î. Then the ring 9?/p contains 
no divisors of zero and hence is irreducible. But clearly 9?/p is a com­
mutative 7r-regular ring, and hence by the preceding theorem must 
be a special primary ring. However a special primary ring without 
divisors of zero is a field, and this implies that p is divisorless. J 

The final theorem of this section now follows immediately from a 
theorem of Krull.§ 

THEOREM 4. In a commutative ir-regular ring every ideal is the inter­
section of its primary ideal divisors. 

* Cf. van der Waerden, Moderne Algebra, vol. 2, p. 164. 
t That is, expressible as a direct sum of two proper two-sided ideals. 
% Cf. S, Theorem 8. 
§ W. Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Mathematische 

Annalen, vol. 101 (1929), p. 738. 
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3. Characterizations of commutative 7r-regular and ra-regular rings. 
From the preceding theorem it follows* that a commutative x-regular 
ring is isomorphic to a subring of a direct sum of primary rings, there 
being in general an infinite number of summands. But a primary ring 
can be imbedded in a special primary ring, f and we thus have the 
theorem : 

THEOREM 5. A commutative ir-regular ring is isomorphic to a subring 
of a direct sum of special primary rings. 

In any commutative ring, if a primary ideal q has the property 
that whenever a finite power of an element b is in q, then ôm = 0 (q), 
we shall say that q is a primary ideal of index m. In other words, the 
primary ideal q Jias index m if and only if xm = 0 for every element x 
in the radical of 9?/q. I t is obvious that a primary ideal of index m 
is also primary of index ky where k is any positive integer greater 
than m. A prime ideal is clearly a primary ideal of index 1. We may 
remark also that if a commutative ring is ra-regular it is also (m + I r ­
regular and therefore ^-regular if k>m. For if a2mx = am> it is easily 
verified that 

and this implies that am+1 is regular. 
I t is now easy to establish the following generalization of a known 

theorem on regular rings:J 

THEOREM 6. A necessary and sufficient condition that a commutative 
ring 9Î, with unit element, be m-regular is that in 9t every ideal be the 
intersection of its primary ideal divisors of index m. 

If 9Î is m-regular, then every primary ideal is of index m. For if q 
is a primary ideal and Ö^ = 0 (q), (k>m), then since a2mx=:am

y it fol­
lows that for each positive integer i> 1, 

aimx = a(i_1)wl. 

But for some i, aim = 0 (q), and thusa ( i _ 1 ) m = 0 (q). A repetition finally 
shows that am = 0 (q). Hence q is of index m, and Theorem 4 completes 
the proof of the first part of the theorem. 

Conversely, suppose 9Î is a commutative ring with unit element in 
which every ideal is the intersection of its primary divisors of index m. 
Let a be an arbitrary element of 9?. We shall show that there exists 

* S, Theorem 1. 
t See Hölzer, loc. cit., p. 722. 
t S, Theorem 9. 
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an x such that a2mx = am. Let q denote an arbitrary primary divisor 
of (a2m) of index m. Then also am = 0 (q) as follows at once from the 
assumption that q is of index m. Hence (am) and (a2m) have precisely 
the same primary ideal divisors of index m; thus, by hypothesis, it 
follows that (am) = (a2m). That is, there exists an x such that a2mx = am, 
and am is regular. Thus 9? is m-regular. 

We conclude with the following theorem : 

THEOREM 7. A necessary and sufficient condition that a commutative 
ring 9?, with unit element, be m-regular is that all direct indecomposable 
ideals be primary of index m.* 

I t is known f that in an arbitrary ring with unit element every ideal 
is the intersection of its direct indecomposable ideal divisors. If these 
are all primary of index m, the preceding theorem shows that 9Î is 
m-regular. 

Suppose 9? is m-regular, and let t be a direct indecomposable ideal 
in 9Î. Then 9Î/Ï is irreducible and is also m-regular. Thus, by Theorem 
2, 9Î/Ï is a special primary ring and t is therefore a primary ideal in 9Î. 
Theorem 6 then states that Ï is of index m, and the proof is completed. 

SMITH COLLEGE 

A FORMULA FOR THE COEFFICIENTS OF THE 
CYCLOTOMIC POLYNOMIAL* 

J. E. EATON 

Despite the widespread use of the roots of unity in the solution of 
many mathematical questions, the problem of characterizing the 
irreducible equation 

Fn(x) = xr + ai%r~l + • • • + a>r = 0 

whose roots are the primitive wth roots of unity has received little 
attention. I t is well known that r=</)(n), that Fn(l)=p for n=pa 

(where p is a prime) and Fn(l) = 1 otherwise. For n a power of a prime 
ai is 1 or 0. In 1883 Migotti§ proved that for n a product of two 
primes ai is ± 1 or 0. In 1895 Bang|| showed that for n a product of 

* Cf. S, Theorem 10. 
t See S, §4. 
t Presented to the Society, February 26, 1938. 
§ Sitzungsberichte der Akademie der Wissenschaften, Vienna, (2), vol. 87 (1883), 

pp. 7-14. 
|| Nyt Tidsskrift for Mathematik, (B), vol. 6 (1895), pp. 6-12. 


