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POLYGENIC FUNCTIONS WHOSE ASSOCIATED 
ELEMENT-TO-POINT TRANSFORMATION 

CONVERTS UNIONS INTO POINTS* 

EDWARD KASNER 

I. Introduction. A function w = <t>(x, y)+i\p(x, y) is called a poly­
genic f unction of the complex variable z = x+iy if the real functions 
<j> and yp are general, that is, are not required to satisfy the Cauchy-
Riemann equations. The value of the derivative of a polygenic func­
tion at a point z0 depends in general not only on the point z0 but 
also on the direction 6 along which z approaches s0; that is, dw/dz 
is of the form F(x, y, B). Thus the derivative y = dw/dz of a polygenic 
function may be regarded as determining a correspondence between 
the lineal elements (x, y, 6) of the s-plane and the points (a, /3) of the 
7-plane, where y = a-{-i(3. We call this correspondence the element-to-
point transformation T associated with the polygenic function w. 

In previous papers (Kasner, A new theory of polygenic functions, 
Science, vol. 66 (1927), pp. 581-582; General theory of polygenic func­
tions, Proceedings of the National Academy of Sciences, vol. 13 
(1928), pp. 75-82; The second derivative of a polygenic function, Trans­
actions of this Society, vol. 30 (1928), pp. 805-818) we have shown 
that the element-to-point transformation T associated with a poly­
genic function must possess the two following properties: 

I. Elements at a given point in the z-plane correspond to points of 
a circle I in the y-plane. 

II . Corresponding central angles of the circle and angles at the point 
are in the ratio —2:1 . 

If an element-to-point transformation T possesses the property I, 
then we define the function H-\-iK, which as a vector represents the 
center of the circle / , to be the center function of T, and the function 
(H+h)+i(K+k), which as a vector represents the point (called the 
initial point of the circle) on the circle I which corresponds to the 
initial direction 0 = 0 in the 2-plane, we define to be the principal 
phase function of T. The circle / together with its initial point we call 
a clock. 

We then find (Kasner, A complete characterization of polygenic func­
tions. Proceedings of the National Academy of Sciences, vol. 22 
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(1936), pp. 172-177), that the element-to-point transformation T as­
sociated with a polygenic function possesses the following additional 
property : 

I I I . The principal phase point of the clock representing the derivative 
of the center f unction of T coincides with the center of the clock represent­
ing the derivative of the principal phase function of T. 

In the paper last cited, it is also proved that for an element-to-point 
transformation to be associated with a polygenic function, it is necessary 
and sufficient that it possess the properties I, II , and I I I . 

The associated transformation T carries a single element into a 
point, and it carries the oo1 elements at a point in the s,-plane into the 
points of a circle in the 7-plane (property I). However, a given point 
in the 7-plane will correspond, in general, not to a single element in 
the 3-plane, but to a series ( 00 1 elements). Now we inquire under 
what conditions will this series be a union {curve or point). Of course 
we mean that this shall happen for all the points of the 7-plane, that 
is, we demand that all the series so formed shall be unions. I t turns 
out analytically that this problem means that a certain pair of func­
tions of (x, y y p) shall be in involution. In our discussion, we do not 
demand that the jacobians be different from zero; therefore our solu­
tion will include degenerate cases. But actually the major part of the 
solution is not degenerate. 

Our problem is thus to determine a certain specific class of poly­
genic functions, namely, that class for which, instead of associated 
series, we obtain unions. This class, we find by a long analytic discus­
sion, consists of the f oil owing three distinct types: 

(A) The monogenic functions w =f(z). 
(B) The mixed quadratic fractional polygenic functions 

az + b 
w = _ — ^ cz -j_ ^ a y* 0. 

â(âz + b) 

(C) The affine linear polygenic functions w = Az+Bz+C, (B^O). 
Of these three types, the quadratic type (B) is the essentially 

significant result revealed by our investigation. 

2. The associated element-to-point transformation T of a poly­
genic function. Let the element-to-point transformation T 

(i) 7 = «(*, y, e) + ip(x, y, e) 

possess the properties I, II , and I I I . Then we find that T can be writ­
ten in the form 
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a = H + h cos 20 + k sin 2(9, 

p = K - h sin 2d + k cos 2(9, 

where i7, K, h, k are functions of x and y only which satisfy 

(3) Hx — Ky = hx+ kyy Kx + Hy = kx — hy. 

Let w = (j)(x, y)+iyp(x, y) be any polygenic function to which T is 
the associated element-to-point transformation. Then w must satisfy 
the two equations 

i r a ön ir<9 on 
4 ) —\J- ~ i — \™ = H+iK, _ _ + f _ U = * + f*. 

2 Ld# d;yj 2 Ld# d;yj 

From (4) it can very easily be proved that any two polygenic func­
tions which have the same associated element-to-point transformation T 
differ merely by a complex constant. 

3. Polygenic functions whose associated element-to-point trans­
formations convert unions into points. We prove the following theo­
rem: 

THEOREM. The totality of polygenic functions whose associated ele­
ment-to-point transformations convert unions of the z-plane into the 
points of the y-plane consists of the three distinct types (A), (B), (C), 
as specified at the end of §1. 

The proof will occupy the next three pages. Upon writing £ = t a n 6 
the equations (2) become 

(H + h) + 2kp + (H - h)p2 

a = ; 

_ (K + k) - 2hp + (K - k)p* 

First let us consider the case in which h and k are both zero. Then 
from (5) we see that our element-to-point transformation becomes a 
point-to-point transformation. Hence when h = k = 0, the points of the 
z-plane become the points of the Y-plane, and the condition of o^r 
theorem is therefore satisfied. From (4) we find that w must be a 
monogenic function of z. Henceforth we shall suppose that at least 
one of the functions h and k is different from zero. 

For the element-to-point transformation (5) to convert unions of 
the z-plane into the points of the Y-plane it is necessary and sufficient 
that 
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P* + PPv PP 
(6) 

ax + pay aT 

that is, the functions a and /3 must be in involution. Substituting (5) 
into (6) and making use of the equations (3), we obtain 

(Kx + K) + p(Hx - 3hx) + p2(- Hy - 3hy) + p\Ky - ky) 

(Hx + hx) + p(- Kx + 3kx) + p\Ky + 3ky) + p\Ey - hv) 

h + 2kp - hp2 

~ - k + 2hp + kp2 ' 

Since the equation (7) is an identity in p, we obtain, upon setting 
the coefficients c f the powers of p equal to zero and making use of the 
equations (3), the equations 

h — Kx — kx 3HX — hx Hy + kx 

K 11 x ~~y~ ft x OA x K x 1\- y fl x 

(8) 
L± x ~\~ tVy Oily J fly J\. y Ky 

A J fly d XV y I K y ±1 y \ fly 

From the equations (8) it follows by ratio and proportion that 

h _Hy- Kx _ Hx+ Ky 

k H X -\~ Ky Hy ~\~ KX 

Since all the functions are real, it follows from (9) that 

(10) Hx = Ky, Hy = KX. 

From (10) we find that H+iK is an analytic function of z; that is 

(11) H+iK = \(z), 

where \(z) is an analytic function of z. 
Substituting Kx = Hy and Ky= —Hx into (8), we find that the equa­

tions (8) become 

h — Hy — kx 3HX — hx Hx + kv 3Hy + hy 

k H x + hx 3Hy — kx Hy — hy — 3HX + ky 

Also substituting Kx — Hy and Ky= —Hx into equations (3), we ob­
tain 

(13) 2HX = hx+ ky, 2HV = - hy+ kx. 
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Upon substituting (13) into (12), we find 

iv ivy ~~~ O R x tl X | ^ R y 

(14) 
R ö lb x "T~" t\> y ~~~ Oily I R x 

These two equations are equivalent to the equations 

\J ll fl x "T~ à fC fC x ~~~ Rfl"tl ' iv R y . 

(15) 
3hhy + 3kky = M* — khx. 

The equations (15) are then equivalent to the equations 

3 d 3 
log (A2 + k2) = — — arc tan &/A, 

2 a^ dy 
(16) 

3 3 d 
log (h2 + k2) = — arc tan k/h. 

2 dy dx 
From (16), it follows that (3/2) log (h2 + k2)+i arc tan k/h is an ana­
lytic function of z. Thence exp {(3/2) log (h2 + k2)+i arc tan k/h} is 
an analytic function of z\ that is 
(17) (h2 + k2)(h + ik) = M (g) , 

where /x(z) is an analytic function of z. Moreover /x(2)5^0, since at 
least one of the quantities h, k is different from zero. 

Now (17) may be written in the form 

(18) (h - ik)(h+ ik)2 = ix(z). 

Upon taking the conjugate of the equation (18), we obtain 

(19) (h+ ik)(h- ik)2 = p(z). 

Solving the equations (18) and (19) for h+ik, we find 

(20) h+ ik = [M(S)] 2 / 3 / [M(2)] 1 / 3 . 

It is seen that the condition of our theorem is satisfied if the four 
functions H, K, h, k satisfy the equations (3), (11), and (20). From 
these equations, we find that w must be an analytic polygenic func­
tion of x and y. Hence w may be written as an analytic function of z 
and z; that is 

(21) w = / ( M ) , 

where ƒ is an analytic function of z and z. 
From equations (4), (11), (20), and (21), we find that 

(22) / . = X(i), U = U§)]2'7b(s)]1/3. 
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The equations (3) are then equivalent to 

X'(s) d r , 
(23) - V = — \p(z) ~1/3. 

From (23) we find that 

X'(s) d . , 
<24> M O F - - shMi-"—• 
where a is a complex constant. From (24) we obtain 

(25) X ' ( g ) = — - ^ — - , /i(s) = (flg + 5)2 (flg + 5)3 

First let us suppose that a is zero. Then from (22) and (25) we find 
that fz a n d / i are both constants. Thus w is the affine linear polygenic 
function w = Az+Bz + C where By^O. 

Next let a?*0. Then from (22) and (25) we find that 

a az + b 
(26) ƒz = — + c, ƒ * = — • 

â(âz + o) (âz + b)2 

From (26) we see that our polygenic function w must be the mixed 
quadratic fractional polygenic function 

az + b 
(27) w= -— — + cz + d, 

â(âz + o) 
where a^O, 6, c, J are complex constants. This completes the proof. 

4. The unions which under the associated element-to-point trans­
formation become points. We consider the three classes of functions 
mentioned in the theorem. 

(A) The monogenic functions w =f{z). Let the monogenic function 
w =f(z) be not an affine linear monogenic function. Then the elements 
at any point z of the 2-plane are converted into a point y of the 
7-plane and conversely. Thus, for a monogenic function which is not 
affine linear, the oo2 point-unions of the z-plane are converted into the 
oo2 points of the y-plane, and conversely. 

On the other hand^ let w be an affine linear monogenic function. 
Then the derivative of w is constant; hence in the 7-plane we have a 
single fixed point. To this fixed point corresponds the opulence (the 
totality of 00 3 elements) of the s-plane. Thus f or an affine linear mono­
genic function, the opulence of the z-plane is converted into a fixed point 
of the y-plane. 
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In the geometry of lineal elements of the plane, a set of oo1 ele­
ments is called a series, a set of co2 elements is called afield, and the 
totality of oo3 elements is called the opulence. 

(B) The mixed quadratic fractional polygenic functions 

az + b 
w = _—1_ cz _|_ ^ 

â(âz + b) 
The unions in the s-plane, which under the associated element-to-
point transformation of the polygenic function w become the points 
of the 7-plane, are the oo2 circles through the point —b/a and the field 
defined by the oo1 straight lines through the point —b/a. 

To a point y^c of the 7-plane there corresponds a definite circle 
of the s-plane through the point —b/a, and conversely. The center 
C and the radius R are given by the formulas 

b â 1 
C = h , R* = 

a a2(c — y) aâ{c — y){c — 7) 
The field defined by the pencil of straight lines through the point 

— b/a of the 3-plane is converted into the point c of the 7-plane. 
(C). The affine linear polygenic functions w = Az-\-Bz+C, (B^O). 

The associated element-to-point transformation of the affine linear 
polygenic function w = Az+Bz+C, (B^O), converts the opulence 
(the totality of 003 elements) of the s-plane into the 00 x points of the 
circle in the 7-plane whose center is A and whose radius is \B\ ^ 0 . 

I t is found that to any point of the fixed circle in the y-plane, there 
corresponds the field defined by 00l parallel straight lines, and conversely. 

5. Scholium. We thus find that there are four distinct geometric 
possibilities in the s-plane: 

(A ;). The 002 point-unions (stars). 
(A / ;) . The opulence of elements in the s-plane. 
(B). The 002 circles through a fixed point together with the field 

defined by the pencil of straight lines through the same fixed point. 
(C). The 00 1 fields defined by parallel straight lines. 
In the 7-plane, we find the following three distinct geometric possi­

bilities : 
(A', B). The 002 points. 
(C). The 00 1 points of a fixed circle. 
(A") A single fixed point. 
We remark in conclusion that the quadratic type (B), formula (27), 

gives the really significant configuration. 
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