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POLYGENIC FUNCTIONS WHOSE ASSOCIATED
ELEMENT-TO-POINT TRANSFORMATION
CONVERTS UNIONS INTO POINTS*

EDWARD KASNER

1. Introduction. A function w=¢(x, v)+#(x, y) is called a poly-
genic function of the complex variable z=x+1y if the real functions
¢ and ¢ are general, that is, are not required to satisfy the Cauchy-
Riemann equations. The value of the derivative of a polygenic func-
tion at a point 2, depends in general not only on the point 2, but
also on the direction 6 along which z approaches zy; that is, dw/dz
is of the form F(x, y, ). Thus the derivative v =dw/dz of a polygenic
function may be regarded as determining a correspondence between
the lineal elements (x, y, ) of the z-plane and the points («, 8) of the
v-plane, where v =a-+i8. We call this correspondence the element-to-
point transformation T associated with the polygenic function w.

In previous papers (Kasner, A new theory of polygenic functions,
Science, vol. 66 (1927), pp. 581-582; General theory of polygenic func-
tions, Proceedings of the National Academy of Sciences, vol. 13
(1928), pp. 75-82; The second derivative of a polygenic function, Trans-
actions of this Society, vol. 30 (1928), pp. 805-818) we have shown
that the element-to-point transformation 7" associated with a poly-
genic function must possess the two following properties:

1. Elements at a given point in the z-plane correspond to points of
a circle I in the y-plane.

I1. Corresponding central angles of the circle and angles at the point
are in the ratio —2:1.

If an element-to-point transformation T possesses the property I,
then we define the function H+:K, which as a vector represents the
center of the circle I, to be the center function of T, and the function
(H+h)+i(K+k), which as a vector represents the point (called the
initial point of the circle) on the circle I which corresponds to the
initial direction =0 in the z-plane, we define to be the principal
phase function of T. The circle I together with its initial point we call
a clock.

We then find (Kasner, 4 complete characterization of polygenic func-
tions, Proceedings of the National Academy of Sciences, vol. 22

* Presented to the Society, September 6, 1938.
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(1936), pp. 172-177), that the element-to-point transformation 7" as-
sociated with a polygenic function possesses the following additional
property:

II1. The principal phase point of the clock representing the derivative
of the center function of T coincides with the center of the clock represent-
ing the derivative of the principal phase function of T.

In the paper last cited, it is also proved that for an element-to-point
transformation to be associated with a polygenic function, it is necessary
and sufficient that it possess the properties 1, 11, and I11.

The associated transformation T carries a single element into a
point, and it carries the «! elements at a point in the :-plane into the
points of a circle in the y-plane (property I). However, a given point
in the y-plane will correspond, in general, not to a single element in
the z-plane, but to a series (»1! elements). Now we inquire under
what conditions will this series be a union (curve or point). Of course
we mean that this shall happen for all the points of the y-plane, that
is, we demand that all the series so formed shall be unions. It turns
out analytically that this problem means that a certain pair of func-
tions of (x, y, p) shall be in tnvolution. In our discussion, we do not
demand that the jacobians be different from zero; therefore our solu-
tion will include degenerate cases. But actually the major part of the
solution is not degenerate.

Our problem is thus to determine a certain specific class of poly-
genic functions, namely, that class for which, instead of associated
series, we obtain unions. This class, we find by a long analytic discus-
sion, consists of the following three distinct types:

(A) The monogenic functions w=f(z).

(B) The mixed quadratic fractional polygenic functions

az + b d 0
w d(dé+6)+6z+ , a#0.

(C) The affine linear polygenic functions w=Az+Bz+C, (B#0).

Of these three types, the quadratic type (B) is the essentially
significant result revealed by our investigation.

2. The associated element-to-point transformation 7" of a poly-
genic function. Let the element-to-point transformation T°

(1) v = a(%, y, 0) + iB(x, , 0)

possess the properties I, II, and I11. Then we find that T can be writ-
ten in the form
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a = H -+ hcos 20 + k sin 26,

2 .
B =K — hsin 260 + k cos 26,

where H, K, &, k are functions of x and y only which satisfy
3) H,—K,=h,+ k), K, + H, =k, — h,.

Let w=¢(x, )+ (x, y) be any polygenic function to which T is
the associated element-to-point transformation. Then w must satisfy
the two equations

5 II:(*) _a] H4 ik 1[6 +_6:| It ik
— = =i —|w= —| = — |w = ik.
2 Lox 16yw “ 2 Lox 183'

From (4) it can very easily be proved that any two polygenic func-
tions which have the same associated element-to-point transformation T
differ merely by a complex constant.

3. Polygenic functions whose associated element-to-point trans-

formations convert unions into points. We prove the following theo-
rem:

TurEoREM. The totality of polygenic functions whose associated ele-
ment-to-point transformations convert unions of the z-plane into the
points of the vy-plane consists of the three distinct types (A), (B), (C),
as specified at the end of §1.

The proof will occupy the next three pages. Upon writing p=tan 6
the equations (2) become

L E )+ 2kp + (T~ Wy
14 p?

_ (K4 B = 2p 4 (K= Bp*

o= 1+ p

First let us consider the case in which % and & are both zero. Then
from (5) we see that our element-to-point transformation becomes a
point-to-point transformation. Hence when k=% =0, the points of the
z-plane become the points of the y-plane, and the condition of ofr
theorem is therefore satisfied. From (4) we find that w must be a
monogenic function of z. Henceforth we shall suppose that at least
one of the functions % and % is different from zero.

For the element-to-point transformation (5) to convert unions of

the z-plane into the points of the y-plane it is necessary and sufficient
that

©)
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Bo+ tBy _ B
az + poy  a,

(6)

)

that is, the functions o and § must be in involution. Substituting (5)
into (6) and making use of the equations (3), we obtain
(K:c + kz) + P(Hz - th) + P2(" I{v - 3hu) + P3(Ku - ku)
(H:+ ha) + p(— Ko + 3ks) + pX(Ky + 3ky) + p*(Hy — 1)
k4 2kp — hp?
C— kA4 2hp + Ep?
Since the equation (7) is an identity in p, we obtain, upon setting

the coefficients ¢ f the powers of p equal to zero and making use of the
equations (3), the equations

)

— Ky — ks 3H,—h, Hy+ k.
Ho+ he 3Ko— k., Ky, — hs
Ho+ky, 3H,+h, K, —k,

K.—hy, 3K, +ky, —H,+h

h
N
(8)

From the equations (8) it follows by ratio and proportion that

n H,—K, H,+ K,

© % H - '
:c+Ky _Hy+Kx

Since all the functions are real, it follows from (9) that

(10) H, = — K,, H, = K..

From (10) we find that /+4K is an analytic function of Z; that is
(11) H 4+ iK = \3),

where \(2) is an analytic function of z.
Substituting K,=H,and K,= — H, into (8), we find that the equa-
tions (8) become
—H,— ks 3H,—h, H.+k, 3H,+hy
Ho+ he 3H,— ks H,—h, —3H.+k,

12 h"‘
(12) i

Also substituting K,=H, and K,= — H, into equations (3), we ob-
tain

(13) 0H, = ho+ by, 2H, = — hy+ k.
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Upon substituting (13) into (12), we find
h o hy— 3ks  hat 3k,
k 3k + ky — 3hy + k.

(14)

These two equations are equivalent to the equations
3hh, + 3kk, = khy, — hk

(15) v Y
3hhy + 3kky = hk, — kh,.

The equations (15) are then equivalent to the equations

331 h: 4+ k%) = 9 k/h
—L)—g;og( + )——5;arctan/,

(16) 5 9
5 a—ylog (h? + k?) = z);carc tan k/h.

From (16), it follows that (3/2) log (h2+k2%) <1 arc tan k/k is an ana-
lytic function of . Thence exp {(3/2) log (h*+k2)+i arc tan k/h} is
an analytic function of Z; that is

(17) (B + B (h + ik) = u(@),

where p(z) is an analytic function of z. Moreover u(z)#0, since at
least one of the quantities %, k is different from zero.
Now (17) may be written in the form

(18) (B — ik)(h + ik)? = u(3).

Upon taking the conjugate of the equation (18), we obtain
(19) (B + ik)(h — ik)® = m(2).

Solving the equations (18) and (19) for A4k, we find
(20) b+ ik = [u@]*3/[a(z)]vs.

It is seen that the condition of our theorem is satisfied if the four
functions H, K, k, k satisfy the equations (3), (11), and (20). From
these equations, we find that w must be an analytic polygenic func-
tion of x and y. Hence w may be written as an analytic function of 2
and Z; that is

(21) w = f(z2),

where f is an analytic function of z and .
From equations (4), (11), (20), and (21), we find that

(22) f:=2®), fi= k@] [r@E].
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The equations (3) are then equivalent to

N () d

(23) L@ 4 la@z) ]2,

From (23) we find that

(21) e R RO

where @ is a complex constant. From (24) we obtain

(25) NE = ) =
(az + b)? (az + b)°

First let us suppose that @ is zero. Then from (22) and (25) we find
that f, and f; are both constants. Thus w is the affine linear polygenic
function w=Az-+Bz+ C where B#0.

Next let ¢50. Then from (22) and (25) we find that

a az+ b
a(az + b) (az + b)?
From (26) we see that our polygenic function w must be the mixed
quadratic fractional polygenic function

az + b
a(az + b)

where a0, b, ¢, d are complex constants. This completes the proof.

27 w = +cz+d,

4. The unions which under the associated element-to-point trans-
formation become points. We consider the three classes of functions
mentioned in the theorem.

(A) The monogenic functions w=Ff(z). Let the monogenic function
w=f(2) be not an affine linear monogenic function. Then the elements
at any point z of the z-plane are converted into a point vy of the
v-plane and conversely. Thus, for a monogenic function which is not
affine linear, the 2 point-unions of the z-plane are converted into the
2 points of the y-plane, and conversely.

On the other hand, let w be an affine linear monogenic function.
Then the derivative of w is constant; hence in the y-plane we have a
single fixed point. To this fixed point corresponds the opulence (the
totality of « ?elements) of the z-plane. Thus for an affine linear mono-
genic function, the opulence of the z-plane is converted into a fixed point
of the y-plane.
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In the geometry of lineal elements of the plane, a set of «! ele-
ments is called a series, a set of «? elements is called a field, and the
totality of «3 elements is called the opulence.

(B) The mixed quadratic fractional polygenic functions

W= — —%—t—b_— + ¢z + d.
a(az + b)
The unions in the z-plane, which under the associated element-to-
point transformation of the polygenic function w become the points
of the y-plane, are the «?2 circles through the point —b/a and the field
defined by the « strasght lines through the point —b/a.

To a point y5#¢ of the y-plane there corresponds a definite circle
of the z-plane through the point —b/a, and conversely. The center
C and the radius R are given by the formulas

b a 1
C=—— 4+ —-——, 2 = .
a  a*(c—17) ad(c —v)(¢ —7)

The field defined by the pencil of straight lines through the point
—b/a of the z-plane is converted into the point ¢ of the y-plane.

(C). The affine linear polygenic functions w=Az+Bz+C, (B#0).
The associated element-to-point transformation of the affine linear
polygenic function w=Az+Bz+C, (B50), converts the opulence
(the totality of «3 elements) of the z-plane into the « ! points of the
circle in the vy-plane whose center is 4 and whose radius is | B| 0.

It is found that fo any point of the fixed circle in the y-plane, there
corresponds the field defined by ! parallel straight lines, and conversely.

5. Scholium. We thus find that there are four distinct geometric
possibilities in the z-plane:

(A’). The 2 point-unions (stars).

(A'"). The opulence of elements in the z-plane.

(B). The «? circles through a fixed point together with the field
defined by the pencil of straight lines through the same fixed point.

(C). The «! fields defined by parallel straight lines.

In the y-plane, we find the following three distinct geometric possi-
bilities:

(A’, B). The «?2 points.

(C). The =1 points of a fixed circle.

(A’") A single fixed point.

We remark in conclusion that the quadratic type (B), formula (27),
gives the really significant configuration.
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