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(@1)r - - -, (@s-1)- (and a) are determined uniquely up to similarity.
Then the Krull-Remak-Schmidt theorem, applied now to /M,
shows that (@), is also determined uniquely up to similarity.
ReMARK. The above uniqueness theorem is unsatisfactory, since
two diagonal forms (of the same type) with diagonal elements
a1, s, - - - and af, ad, - - - are in general not equivalent (associate)
even if a1, @, - - - and af, @y, - - - are similar in pairs. But if, more-
over, a1 (therefore also af) is a unit, then they are equivalent.*
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In two recent notes in this Bulletin{ (referred to below as I, II)
I considered the boundary conditions

ou
(1) — 4+ au =0, a = const.,
on

for harmonic functions, investigating in particular the “reflection” of
singularities across a plane at which (1) obtains and indicating several
applications of the results.

Dr. A. Weinstein has kindly called my attention to an application
of (1) that I have overlooked, namely, to the problem of gravity sur-
face waves of liquids. Under the assumption of small irrotational mo-
tion, the velocity potential ¢ satisfies along the free boundary the
condition}

@) — teg—=

n
For simple harmonic motions with time entering as e, this reduces
to (1) with

©) = —d"/g.§

Again, equation (1) may be applied, for two-dimensional motions, to
the flow function ¢ which is the conjugate harmonic to ¢ by assuming

* Fitting, loc. cit.

1 I, this Bulletin, vol. 43 (1936), p. 873; II, this Bulletin, vol. 44 (1938), p. 443.
1 Lamb, Hydrodynamics, Cambridge, 1924, p. 342.

§ Lamb, loc. cit., p. 342.
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a wave propagating without change of shape in the direction of x with
velocity ¢. Replacing 42/9¢2 in (2) by ¢232%/dx?, introducing ¢, and
integrating over the free boundary, one proves that (1) applies to ¢
with

€)) a= — g/t
It will be noted that both in equation (3) and in equation (4) ¢ is
negative.

Turning to the “Green’s functions” of I, we interpret the one of
§§2—4 as the velocity potential due to a pulsating point source; the
first two functions described in §5 would represent the velocity po-
tential due to a small sphere which is oscillating parallel and normally
to the free surface; while the two-dimensional Green’s function of §6
could be used either for a pulsating line source or a line source moving
with uniform velocity. In all cases the singularities are at a depth %
below the free surface. The interpretation of these functions given
in I for the case R(a) >0, if it applied now, would replace the effect
of the free boundaries by proper images of the sources in an infinite
fluid. However, it no longer applies, since the integrals (11), (23), - - -
no longer converge. On the other hand, the representations such as
(18), (23), (24) still apply, provided the path of integration be prop-
erly deformed in the complex plane. Similarly, equation (25) still
applies.

For a canal of finite depth H the following boundary conditions
apply at the bottom y=0:

(5) v =0,
o)
(6) o

The last boundary condition along with the boundary condition (1) I
investigated in II, §3, once more as regards the “reflection” of singu-
larities, and again confining myself to the case R(a) >0. Dr. Wein-
stein has considered the boundary conditions of the form (1) and (5)
along the two parallel boundaries of a strip and for negative a.* He
showed that except possibly for the functions

) sinh ay sin ax, sinh ay cos ax

there exist no bounded non-null solutions of the problem. Obviously
(7) will satisfy (1) at y=H provided

* Rendiconti Lincei, 1927, p. 259; Comptes Rendus de I’Académie des Sciences,
Paris, 1927, p. 479; Die Naturwissenschaften, 1929, p. 381.
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®) acothaH 4+ ¢ = 0.%*

A different treatment of the same subject was given by Hoheisel}
who first reflects across the boundary y =0 then reflects the function
du/dy+awu across the other boundary y = H in a manner entirely simi-
lar to the one employed in I, §2, II, §3. Hoheisel is led to a difference-
differential equation for the harmonic function involving its values
and its y derivatives at (x, ¥) and (x, y+2H).

The above is of interest in connection with the results of I, II in
pointing out further the difference that might exist between a case
where only the real part of a is positive and when it is negative. The
existence of harmonic solutions of the proper homogeneous boundary
conditions would render the corresponding Green’s functions non-
unique to within an additive linear combination of these solutions.
From Weinstein’s results it follows, therefore, that the Green’s func-
tion of II, §3, if existent for a <0 and bounded at infinity, is also
unique. The solutions (7), (8) of Weinstein are the residues of the
integrands of the integrals of the form II, (17).

GeNERAL ELEcTRIC CoO.,
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* The surface waves represented by the above were investigated first by Airy
(see Lamb, loc. cit., §§227-229). Equation (5) of §229 takes the place of the above (8)
due to the fact that the velocity potential ¢ =cosh ay sin ax rather than the flux
function (7) is employed.

t Jahresbericht der deutschen Mathematiker-Vereinigung, vol. 39 (1930), p. 54.
For this reference I am also indebted to Dr. Weinstein.



