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A RELATIVE OF THE LEMMA OF SCHWARZ* 

E. F. BECKENBACH 

1. Introduction. Let w=f(z), where z = u+iv, be analytic for \z\ < 1 , 
and let 

d{r, 6; ƒ') = | /(re«) - /(O) | = I f * f(pe")dp I, 

so that d(r, 0; ƒ') is the length of the segment on the w-plane between 
the image of the point 3 = 0 and the image of the point z = reie. 

The lemma of Schwarz is the following: 

THEOREM 1. Let w=f(z) be analytic f or \z\ < 1 . If 

d(r,6;f)S 1 

for all (r, 6) with r<l, then 

(1) d(r,0;f)gr 

and 

(2) | / ( 0 ) | ^ 1 . 

The sign of equality holds in (1) (for r^O) and in (2), if and only if 
\fr(z) | = 1 ; that is, if and only if the transformation w=f(z) is a rigid 
motion. 

If the (real) function g(z) is subharmonic for \z\ < 1 , then the 
Lebesgue integral 

Kr, 6; g) = f g(Peie)dp 
J o 

actually exists. We shall prove the following theorem: 

THEOREM 2. Let g(z) be subharmonic f or \z\ < 1. If 

(3) l(r, 8;g)£l 

for all (V, 0) with r < 1, then 

(4) 7(r, 0; *) = r 

and 

(5) g(0) ^ 1. 

* Presented to the Society, December 28, 1937. 
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The sign of equality holds in (4) {for r^O) and in (5), if and only if 

In particular, for the function g{z) = | / ' ( z ) | , where/(s) is analytic 
for I s I < 1, 

l(r,S; | / ' | ) = I \f'(pe«)\dp r,B; | / | ) = fr\f'(Pei6) 
J 0 

is the length of the image on the w-plane of the segment between the 
points 3 = 0 and z = reie. The following theorem, which is a special case 
of Theorem 2, appears to be rather closely related to the lemma of 
Schwarz : 

THEOREM 3. Let w=f{z) be analytic f or \z\ < 1 . If 

Kr, 0; | ƒ' | ) ^ 1 

for all (r, 6) with r<\, then 

(6) l(r, 6; \ f \ ) £ r 

and 

(7) | / ' ( 0 ) | ^ 1 . 

The sign of equality holds in (6) {for r^O) and in (7), if and only if 
| / ' ( s ) | = 1 ; that is, if and only if the transformation w=f{z) is a rigid 
motion. 

Let the real functions 

(8) Xj = Xj{z) — Xj{u + iv), j = 1, 2, 3, 

have continuous derivatives of the third order with respect to u, v, 
in \z\ < 1 , with 

(9) E=G= [\{z)]\ F = 0, 

where E, F, G are the fundamental quantities of the first order, so 
that the functions (8) give an isothermic map of \z\ < 1 on a sur­
face 5, that is, a map which is conformai except at points where X = 0. 

The Gaussian curvature K is defined on 5 except at points where 
\ = 0. 

The function 

l{r, d; X) = | \{peie)dP 
Jo 

denotes now the length of the image on 5 of the segment between the 
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points 3 = 0 and z = reid. We have the following further special case 
of Theorem 2 : 

THEOREM 4. Let the Gaussian curvature K be less than or equal to 
zero wherever K is defined on the above surface S. If 

Kr, 0;\)Û1 

for all (r, 6) with r < 1, then 

(10) l(r, 6; X) £ r 

and 

(11) X(0) S 1. 

The sign of equality holds in (10) {for ry^O) and in (11), if and only if 
\(s) == 1 ; that isf if and only if S is a developable piece of surface and is a 
geodesic circle given in isometric representation. 

Theorem 3 is a special case of Theorem 4. 
A generalization of Theorem 1 to isothermic maps on minimal sur­

faces, similar to the above generalization of Theorem 3 to isothermic 
maps on surfaces of non-positive curvature, previously has been 
given.* Since K^0 on minimal surfaces, Theorem 4 applies in par­
ticular to minimal surfaces. 

An easily obtained generalization of Liouville's theorem is that if 
F{z) = F(u+iv) is a harmonic function of u and v in the entire finite 
plane and is bounded, then F(z) is identically constant. It follows that 
if the functions (8), not necessarily satisfying (9), are harmonic in 
the entire finite plane, and if the corresponding surface S is bounded, 
then 5 reduces to a point. In particular, since the coordinate func­
tions of a minimal surface in isothermic representation necessarily are 
harmonic, if the functions (8) give an isothermic representation of the 
entire finite plane on a minimal surface S, and if S is bounded, then S 
reduces to a point. 

From Theorem 4 we shall obtain the following similar generaliza­
tion to space of Liouville's theorem: 

THEOREM 5. Let the f unctions (8) satisfy (9) in the entire finite plane, 
and let the Gaussian curvature K be less than or equal to zero wherever K 
is defined on the corresponding surface S. If l{r, 6; X) is bounded, 

Kr,6;\) = M, 

for all (r, 0), then S reduces to a point. 

* E. F . Beckenbach and T. Radó, Sübharmonic functions and minimal surfaces, 
Transactions of this Society, vol. 35 (1933), pp. 648-661. 
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Finally, we shall point out certain forms which our results show to 
be positive definite and shall add a further algebraic proof that these 
forms are positive definite. 

2. Subharmonic functions and functions of class PL. In this sec­
tion we present the definitions of subharmonic functions and func­
tions of class PL and list the results concerning these functions which 
we shall use in the sequel.* 

2.1. Let g(z) be defined in a domain D (connected open set), and 
assume — <*> ^g(z) < + oo in D. Suppose that g(z) is not identically 
equal to — oo in D, that g(z) is upper semi-continuous in D, and that, 
for every domain D' lying together with its boundary B' in D and 
for every function h(z) continuous in D''+B'', harmonic in D'y and 
satisfying h(z) ^g(z) on B', we have h(z) ^g(z) in D'. Then g{z) is said 
to be subharmonic in D. 

2.2. A function p(z), defined in a domain D, is said to be of class PL 
in D provided that p(z) ^ 0 in D and log p(z) is subharmonic. It is un­
derstood that log p{z) = — co at points where p(z) = 0. 

2.3. If p{z) is of class PL in D, then p{z) is subharmonic in D. 
2.4. If a real function g{z) admits continuous second derivatives, 

then a necessary and sufficient condition that g(z) be subharmonic is 
that its Laplacian be non-negative: 

Ag = guu + gvv ^ 0. 

2.5. A subharmonic function g(z) cannot attain its least upper 
bound at any (interior) point of its domain of definition D, unless 
g(z) is identically constant. 

2.6. If g(z) is subharmonic in a domain D, and if T is a smooth 
Jordan curve in D, then g{z) is summable on Y as a function of the 
arc length. 

2.7. The sum of a finite number of functions, subharmonic (or of 
class PL) in a domain D, is again a function subharmonic (or of class 
PL) in D. 

2.8. The product of a finite number of functions of class PL in a 
domain D is again a function of class PL in D. 

2.9. If the function g(z) is subharmonic (or of class PL) in a do­
main D, then the sequence 

g(*l k) = — f f g(z + pe*)pdpd6, k = l,2,..., 
IT J J p<Uk 

* For the definitions and results of this section, and for references to their sources 
see T. Radó, Subharmonic Functions, Springer, Berlin, 1937, particularly chaps. 1-3. 
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has the following properties. Let Df be a domain lying together with 
its boundary in D. Then for large k the function g(z; k) is defined, 
subharmonic (or of class PL), and continuous in D'; and 

(12) g(*;*)->g(*) 

with 

(13) g(z; k) S: g{z; k + 1) 

in Df. We indicate that (12) and (13) both hold by writing g(z; k) 

2.10. Let there be given a domain D and a sequence of functions 
{gn(z)} such that if D' is any domain lying together with its bound­
ary in Z>, then for large n the functions gn(z), gn+i(z), • • • are defined 
and subharmonic (or of class PL) in Df. If {gn(z)} converges uni­
formly in D' to a function g(z), then g(z) is subharmonic (or is either 
of class PL or identically zero) in D. 

2.11. If, instead of converging uniformly in D', the sequence 
{gn(z)} of 2.10 satisfies 

gn(z) ^ gn+l(z) 

in D', then \gn{z)} converges either to a subharmonic function or to 
— oo (or converges either to a function of class PL or to zero) through­
out D. 

3. Lemma. Of the three related results of this section, only 3.1, re­
stricted to the easily proved special case in which g(z) is continuous, 
will be used as a lemma in proving Theorem 2. The others are in­
cluded for the sake of completeness. 

3.1. If g{z) is subharmonic in \z\ < 1 , then the f unction 

Kre") = — f g(pe»)dp9 r * 0, 
(14) r J0 

*(0) = g ( 0 ) , 

is again subharmonic in r < 1. 

PROOF. Suppose first that g(z) is continuous. For any positive in­
teger n, the function 

1 
hn{reie) = Y^ g(lreid/n) — 

is subharmonic in r<1 by 2.7. Further, the sequence {hn(reid)} con­
verges uniformly to h(reid) in any closed region in r< 1 ; hence, by 2.10 
the function 
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h(reie) = lim hn(reie) 
W—>oo 

is subharmonic in r < 1. 
If g{z) is a general subharmonic function, we can no longer consider 

g(z) as a limit of Riemann sums, but may proceed as follows. The 
function g(z; k), defined in 2.9, is defined, subharmonic, and continu­
ous in \z\ < 1 —1/&. Hence by the analysis of the preceding para­
graph, the function 

1 rr 

h(reid; k) = — I g(peid; 
r J0 

k)dp 

is subharmonic in r<l — l/k. Further, by 2.9, 

g(pe»;k)\g(pe»), 

and by 2.6 the integral (14) exists; hence 

and* 

that is, 

frg(pe*;k)dp> frg(pe*)dp, 
Jo J o 

ƒ» r /» r 

g(pe«>; k)dP = g(pea)dp; 
o J o 

hire*; k) \ h(reid). 

Therefore, by 2.11, h(reid) is subharmonic. 
Similarly, we have the following result: 

3.2. If p(z) is of class PL in \z\ < 1, then the f unction 

1 rr 
q(reld) = — I p(pel6)dp, r ^ 0, 

r Jo 

<7(0) = #(0), 

is again of class PL i?z r < 1. 
3.3. If p{z) is of class PL iw | s| < 1, //zen the function 

t(reie) = I p(peid)dp 
J o 

is again of class PL iw r < 1. 

See for instance S. Saks, Théorie de VIntégraley Warsaw, 1933, p. 63. 
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our result follows from 2.8, 3.2, and the fact that the function r= \ z\ 
is of class PL. 

However, the hypothesis that g(z) is subharmonic for \z\ < 1 does 
not imply that the function 

k(reid) = \ g{pei6)dp 
J o 

is subharmonic for r<l. For example, the function 

g(z) = R(z) + l = u+l 

is (positive and) subharmonic for \z\ < 1 . But for the corresponding 
function 

k(reld) = — cos 0 + r, 

we have 

in particular, 

3 1 
Ak(reid) = — cos 6 -\ ; 

2 r 

/ 3 \ 3 4 1 
Akl— eiT) = 1 = < 0, 

\ 4 / 2 3 6 
so that, by 2.4, k(reie) is not subharmonic throughout r<\. 

4. Proof of Theorem 2. Under the hypotheses of Theorem 2, the 
function 

A ( f e » ) =—i(rf6.yg)9 r ^ 0 , 
r 

Ko) = g(o), 

is subharmonic for r < 1 by 3.1. From (3) we have 

Km sup h(peid) S 1 ; 
P - * I , p < i 

whence by 2.5 

(15) h(reie) ^ 1, 
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the sign of equality holding either throughout the circle r < 1 or no­
where in r<\. Now (4) and (5) follow from (15) and the definition of 
h(reie). 

5. On Theorems 3 and 4. If f(z) is analytic, then \f(z)\ is of class 
PL. Indeed, if/(s) ?^0 in a domain Z), then log \f(z) | , which is the real 
part of the analytic function log/(s), is harmonic there, and hence, by 
2.4, is subharmonic. 

Again, if for the functions (8) the equations (9) are satisfied, then 
the Gaussian curvature K of the corresponding surface 5 is given, 
wherever it is defined, by 

1 
K = AlogX.* 

X 
Hence, by 2.4, K^O wherever K is defined on 5 if and only if \(z) is 
of class PL in \z\ < 1 . 

Since \ff(z) | and X(s) are of class PL, they are subharmonic by 2.3, 
so that Theorems 3 and 4 follow as particular cases of Theorem 2. 
Indeed, Theorem 3 is a particular case of Theorem 4, with i£ = 0. 

Though | / ' ( s ) | and X(s) are of class PL, we have used only the 
weaker condition that they are subharmonic. There actually exist 
conformai maps on surfaces S with K>0 for which \(z) is sub­
harmonic, and for these maps Theorem 4 still holds. However, \(z) 
is subharmonic for all isothermic maps of z domains on a surface S if 
and only if K^O wherever K is defined on S;f so the condition that 
\(z) is subharmonic can be used for the surface 5 irrespective of the 
isothermic parameters if and only if K ^ 0 wherever K is defined on S. 

6. Proof of Theorem 5. Let the functions (8) satisfy the hypotheses 
of Theorem 5, and let Z = z/R, where R is positive. For \z\ = r<R, 
the functions 

Xm = x,iz)/M, j = 1, 2, 3, 

as functions of Z, satisfy the conditions of Theorem 4. Hence, for 
r<R 

l(r,6;\) < M\Z\ = Mr/R. 

Keeping z = reie constant and letting R tend to °o, we obtain 

Kr, 0; X) = 0. 

* See E. F, Beckenbach and T. Radó, Subharmonic functions and surfaces of 
negative curvature, Transactions of this Society, vol. 35 (1933), pp. 662-674. 

t E. F. Beckenbach, On subharmonic functions, Duke Mathematical Journal, 
vol. 1 (1935), pp. 480-483. 
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7. On positive definite forms. If the map of | z | < 1 given by w =f(z) 
is everywhere conformai, so that f'(z) y£Q, then we may write 

/'CO = k(z)]2, 

where <j>{z) is analytic in \z\ < 1. Let 

0(2) = E 

then 

*(',«; I/'I) = —KM;**) 
r 

= E 
("ndm 

,m=0 » + W + 1 
yti-\- m p (n— m) id 

where a denotes the complex number conjugate to a. 
Direct computation yields 

AA(r, 6-, <M>) = J2 anamrn+m~2e^n-m)id 4nm 

(16) 
n + m + 1 

= E 
Ww 

n.m-l » + *» + 1 

where bn = 2nanr
n~1enid. 

Since, by 3.1, h(rt 6; <j>4>) is subharmonic, the expression (16) is non-
negative by 2.4. On the other hand, we shall show directly that (16) 
is non-negative and thus obtain an alternative proof of Lemma 3.1 
for the special case under consideration. 

That the Hermitian form (16) is positive definite follows from the 
identity 

b b r l\ °° 

i,m=*i n + m + 1 J o I n=i 
dp 

= T | * ' ( P * * ) | P < * P , 

or equally well from the identity* 

J^ bj)m 
00 1 00 

E E 
^? 

n ,m«l « + m + 1 ,»o I n=l ( « + 1 ) / + 1 

* Suggested by Professor H, E. Bray. 
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The stronger result of 3.3 shows that l(r, d\ <jx/>) is of class PL; 
whence 

[l(r,d;<t*$)]2A log l(r, $; <&) 

* agâha3-âk(g - h)2(j - k)2 

..*"*-! (g + * + 1)0' + * + 1)(* + * + 1)(* + 7 + 1) 
. fg-\-h+j-hkgi(g—h-}-j—k) > Q^ 

On the other hand, it can be shown directly, by an extension of the 
above identities, that (17) is positive definite. 

T H E R I C E INSTITUTE 

SOME ITERATED INTEGRALS IN THE 
FRACTIONAL CALCULUS 

M. S. MACPHAIL 

1. Introduction. A considerable amount of attention has been de­
voted to integrals of fractional order, both in regard to their applica­
tions and to the conditions for their existence.* We shall denote the 
fractional integral of order a by 

(1) TUf{t) = — - f (/ - v)°-y(v)dv, a>0,t>T, 

and it is the purpose of this paper to give some formulas which may 
be of use in manipulating these integrals. We shall prove that under 
certain conditions the following relations hold : 

(2) r^«5a._rw_f->w 
JT tk+a T(k + a)JT tk 

(3) f e-kl
TIt

af(t)dt = k~" \ e-ktf(t)dt, a > 0, 
J rp J rp 

cos ktTItaf(t)dt = k-° I cos (kt + va/2)f(t)dt, 0 < a < 1, 
y « / y 

and (4) holds when cosine is replaced by sine. As an application we 

* A bibliography is given by H. T. Davis, Application of fractional operators to 
functional equations, American Journal of Mathematics, vol. 49 (1927), pp. 123-142. 
See also J. D. Tamarkin, On integrahle solutions of Abel's integral equation, Annals 
of Mathematics, (2), vol. 31 (1930), pp. 219-229. 


