
THE TOPOLOGY OF TRANSFORMATION GROUPS* 

P. A. SMITH 

1. Stated in general terms, the problem which I wish to consider is 
the following: A group G of transformations operates in a space 5 ; 
what relations must exist between the topology of this situation on 
the one hand, and its group theoretical properties, on the other? This 
is of course a rather vague question and I shall not attempt to de­
scribe all the recent results which could be considered as being rele­
vant. I hope rather to illustrate certain special phases of the problem 
by means of examples. I shall then consider in some detail one special 
case where certain conclusions can be drawn which may possibly be 
of interest in algebraic geometry. I refer particularly to a generaliza­
tion to higher dimensions of Harnack's theorem concerning the num­
ber of real branches which a real algebraic curve may possess. 

CONTINUOUS GROUPS 

2. Let us begin by supposing that G is a continuous r-parameter 
group. The elements of G may then be thought of as points of a space 
which has locally the character of a euclidean r-space. Products and 
quotients of two elements are to vary continuously with those ele­
ments. What restrictions does the fact that G is a continuous group 
place upon the space G? I t is very easy to see that G cannot be of 
arbitrary topological structure. For suppose that a is a fixed element 
different from the identity, and that x is an arbitrary element; then 
the transformation Ta: x-+ax, is a homeomorphism of G with itself, 
and no x remains fixed. Now if we assume that G is connected, a can 
be made to describe a continuous path toward the identity element, 
and Ta then undergoes a continuous modification into the identical 
transformation. That is, Ta belongs to the "class of the identity." 
But in many spaces (a sphere for example) every transformation 
which belongs to the class of the identity must leave at least one 
point fixed. Thus no two-parameter group can be topologically 
equivalent to a sphere.f I t is just as easy to show that G must be 

* An address delivered before the New York meeting of the Society on February 
26, 1938, by invitation of the Program Committee. 

t A necessary condition tha t a compact manifold admit transformations of the 
class of the identity without fixed points is that its Euler-Poincaré characteristic 
vanish. See Lefschetz, Topology, American Mathematical Society Colloquium Publi­
cations, vol. 12, New York, 1930, pp. 272, 359. 
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orientable (see for example [3l]). I t follows readily that the only 
surfaces which could be group-spaces are the torus, the infinite cylin­
der, and the euclidean plane; continuous groups of each of these types 
do exist. 

Let us return to the situation mentioned in the beginning in which 
G is realized by means of continuous transformations in 5. If we as­
sume that G operates in 5 transitively, then 5, as well as G, is re­
stricted topologically. For example, if S is a surface, it must belong to 
one of six distinct topological types, at least if G is a Lie group, that 
is, analytic (Cartan [lO]). In this special case of an analytic G, the 
topology of (G, S) is intimately related to the group theoretic infini­
tesimal structure of G. When G is compact this relationship reveals 
itself through a consideration of the invariant integrals on 5 (Cartan 
[8]). In particular, one may assume that S is identical with G, the 
transformations of the realization then being the TVs defined above. 
The theory of invariant integrals then leads to an explicit enumera­
tion of the Betti numbers of compact continuous groups. Cartan [9] 
has pointed out the suggestive fact that on the basis of these and re­
lated results, one may conclude that so far as the ordinary invariants 
of homology theory are concerned, every simply connected simple 
compact Lie group G is equivalent to the topological product of a 
finite number of spheres of varying dimensions. Whether or not G is 
actually homeomorphic to such a product remains to be determined.* 

3. Let us now consider the problem stated at the beginning, from 
a somewhat different point of view. Given certain topological condi-

* Our present knowledge of the topology of Lie groups is due largely to the ana­
lytic and algebraic investigations of Cartan and Weyl. An excellent review of the 
situation will be found in Cartan's expository article [9]. Suffice it to mention here 
that the Betti numbers of compact groups were first obtained by Pontrjagin [22] 
by direct and elementary methods and subsequently by Brauer [5 ] by a method based 
on the theory of invariant integrals. The connecting link between the integrals and 
the homology groups was furnished by de Rham [24]. With regard to the realizations 
of G, it was pointed out by Cartan [lO] that the study of the topological and group-
theoretical properties of a Lie group G contains within itself the study of the proper­
ties of its transitive realizations. For suppose Q is a closed subgroup of G; then the 
cosets #g (x in G) constitute, upon the introduction of natural topology, a space S 
such that the transformations xQ-+a(xQ) (a in G) define a transitive realization (G, S). 
Every transitive (G, S) is in fact equivalent to one defined in this manner by means of 
a suitably chosen Q. The details justifying these remarks when the spaces G and 5 are 
quite general and analyticity is not assumed were first worked out by Freudenthal 
[12 ] and subsequently by the author in his study [33] of partially defined groups and 
realizations (the sort actually encountered in the classical theory of continuous 
groups). As concerns the homotopy groups of a continuous (non-analytic) G see 
Hurewicz [13]; for the special case of the Poincaré group, see also [33], [34], [35]. 
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tions on (G, 5), to what extent is the group-theoretic structure de­
termined ? Suppose, for example, one considers only the analytic case 
and asks: Given the dimension of S (a topological property), what 
are the continuous groups which can operate transitively in 5? The 
answer constitutes, as we know, one of the important chapters in the 
classical works of Lie. Suppose however that one drops the assump­
tion of analyticity and assumes merely that G and S are locally eu-
clidean and that G, as well as the transformations by which G is 
realized, is continuous. Does one then have a situation which is essen­
tially more general than that studied by Lie, or is every (G, S) of this 
type equivalent to a classical (analytic) one? In two rather difficult 
papers, Brouwer [ó] showed that the continuous case is not more gen­
eral than the analytic one when S is one-dimensional, and went far 
toward establishing a similar result when 5 is two-dimensional. With 
regard to G itself, we have now the theorem of von Neumann [18], 
somewhat sharpened by Pontrjagin [21 ], that every /'-parameter G 
which, considered as a space, is compact, is topologically equivalent 
to an analytic G. Whether or not this holds for non-compact G's ap­
pears to be a difficult question. 

These results have a special significance in connection with certain 
problems in the foundations of geometry which were occupying math­
ematicians of another generation. Helmholtz and Lie attempted to 
found euclidean w-dimensional geometry by assuming that space was 
an ^-fold number manifold and then introducing certain postulates 
which were to define the group of rigid motions. It is well known that 
Hubert criticized this procedure on the grounds that analyticity, 
postulated for the transformations which were to be rigid motions, 
did not properly belong to "foundations." Hilbert himself then pro­
posed a set of axioms for two-dimensional geometry in which ana­
lyticity is not assumed, the decisive axiom being a topological closure 
requirement for the system of transformations (see Hubert's Grund-
lagen der Geometrie, seventh edition). In this manner, the number 
plane received a truly topological conversion into the place of 
euclidean geometry. So far as I know, there has been little attempt 
to carry this development out in spaces of higher dimensions. The 
discovery that compact r-parameter groups are analytic is of course 
closely connected with this question ; but there still remains the prob­
lem of characterizing, among the realizations (G, S) operating in a 
given number space 5, those whose transformations, in their totality, 
are topologically equivalent to the rigid motions. A recent work of 
Montgomery and Zippin [ló] which contains a topological-group-
theoretical characterization of the group of rotations about a fixed 
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axis can, I believe, be considered as marking a certain progress 
toward a solution of the problem for three dimensions.* 

FINITE GROUPS 

4. I shall pass over the case in which G is an infinite discrete group 
and assume that G is finite. One may ask, what are the finite groups 
of auto-homeomorphisms of a space 5 with given topological proper­
ties? If S is homeomorphic to a sphere, the answer is known. The 
groups are essentially the same as the finite groups of orthogonal 
transformations of a sphere into itself; for example, if it is required 
that orientation be preserved, the possible groups are cyclic groups of 
rotations about a fixed axis and the rotation groups of the regular 
solids. This is a topological theorem and can be proved by topological 
methods (Kerékjartó [14]). If one asks the more special question, 
what are the finite groups of linear fractional substitutions in one 
complex variable, one may arrive at the answer (essentially the same 
as that of the preceding questions) by function-theoretic methods 
(Klein, Lectures on the Icosahedron). These methods, in their use of 
Riemann surfaces, have a certain topological element, and it is per­
haps this fact that led Poincaré to express the belief that the determi­
nation of the finite groups of linear transformations in n variables 
must depend on the solution of topological problems. 

5. I wish now to consider in more detail the special case in which G 
is finite and cyclic; that is, the case in which we are dealing with a 
single transformation / of finite period. Such transformations arise in 
a number of ways. Suppose, for example, that t is a birational trans­
formation of an algebraic curve C into itself. Then it is known that 
if the genus of C is greater than one, t must be of finite period (the 
Schwarz-Klein theoremf). Again, in the theory of algebraic varieties, 
a particular type of involution, so-called, is that generated by a 
periodic transformation.J In certain problems in the calculus of varia­
tions one encounters cyclic and symmetric products. The ra-fold topo­
logical product of a space K is the space 5 whose "points" are the 
ordered sets (pi, • • • , pm), (pi in K). The m-fold symmetric product 

* I am informed by one of these authors that they have recently established the 
still more significant theorem tha t every (G, S) in which G is compact and connected 
and S is a three-dimensional number space, and which possesses no identical trans­
formations save that which corresponds to the identity element of G, is equivalent 
either to the group of rotations about a fixed axis or about a fixed point. Concerning 
characterizations of translation groups, see [17], 

f See Severi-LoefHer, Vorlesungen über Algebraïsche Geometrie, p. 143. 
% See, for example, Lucien Godeaux, Les Involutions Cycliques Appartenant à une 

Surface Algébrique, Actualités Scientifiques et Industrielles, no. 270, Paris, 1935. 
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K(m) of K is obtained from S by regarding two sets as identical if 
one is a cyclic permutation of the other. In determining the proper­
ties of K^m) it is of advantage to study the periodic transformation 
t'(Pl> i>2, ' ' • , Pm)—>(p2t ' ' ' > Pm, pi) o f S ÜltO i t s e l f . * 

The only invariant of G is now its order m, and our general problem 
therefore reduces to this : Does the topological nature of 5 impose re­
strictions on ml Suppose that S is an orientable surface of genus p-\-l 
and that / preserves orientation. Then we have the interesting fact 
that m can not exceed 4^ + 2.f I wish now to establish a similar result 
for higher dimensions. I shall suppose that S is an analytic orientable 
manifold of an even number of dimensions; S could, for example, be an 
algebraic surface without singularities ; it would then have four (real) 
dimensions. I shall suppose also tha t t is analytic and preserves orien­
tation. We shall see later that the invariant points of t, if any exist, 
constitute a finite number of submanifolds, each of an even number 
of dimensions. In a sense, we may regard as the general case that in 
which the invariant set is of dimension zero. J In any case, we shall 
assume that each of the transformations /, /2, • • • , tm~1 leaves fixed 
only a finite number of points; when m is prime this condition holds 
automatically for the powers of / if it holds for /. 

THEOREM. If the conditions stated above hold, and if the Ruler -
Poincaré characteristic Kof S is negative, then there is an upper bound for 
the period m, which depends only on the Betti numbers of S. 

PROOF. T O every isolated fixed point of a given transformation 
there can be associated a topologically significant numerical "index." 
Let 0 be a fixed point of t. In terms of suitable parameters at O, t can 
be represented by 

ui — tui = cf>i(uh • • • , u2n), i = 1, • - - , 2n, 

where the </>'s are analytic and 0;(O) = 0 . If J{u) is the Jacobian ma-

* Cyclic products K^m) were defined by Walker who determined their Betti num­
bers in terms of those of K. The case m = 2 (symmetric products) had already been 
studied by the author [32] and by Richardson [26]. For applications in the calculus 
of variations, it seems to be necessary to know the Betti numbers of K modulo L, 
where L is a certain subcomplex, homeomorphic to K. These have been obtained by 
Richardson [27] for m — 2 and by Richardson and Smith [29] for arbitrary prime in. 

f First proved by Wiman [40] for birational transformations of algebraic curves; 
the first topological proof is by Steiger [37]. Nielsen [19] subsequently showed that 
the theorem holds if it is assumed that tm is not necessarily the identity but merely 
belongs to the class of the identity. 

% The fixed points of a projective transformation, for example, are isolated unless 
the characteristic equation has multiple roots. 
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trix of this transformation and I is the identity matrix, then it can 
be shown that the index at O is + 1 if the determinant of J(0) —I is 
greater than zero (Alexandroff and Hopf, Topologie, p. 537).* But in 
the present case this condition is bound to be satisfied, as the following 
considerations will show. 

The space of differentials at O is transformed into itself linearly; 
and since this transformation is periodic, it leaves invariant a positive 
definite invariant form; in fact if we write dw» = £»•, such a form is 

Zfe2 + (/̂ )2 + --- + (^~^)2). 

On making a suitable linear transformation of parameters at 0, the 
invariant form will become euclidean. Therefore, in the power series 
expansions of the functions 0t-, the coefficients of the linear terms may 
be assumed to form a proper f orthogonal matrix; hence, after a further 
linear change of parameters, t has, in the neighborhood of 0, the form 

t%i = Xi cos 6i — Xi+i sin 0t- + Xiy 

txi+i = Xi sin 6i + Xi+\ cos 6i + X;+i, i = 1, 3, • • • , 2n — 1, 

where the X's are power series beginning with terms of at least the 
second degree, and the 0t- are multiples of lir/m. I assert that each 0t-
is different from zero (mod 2x). Suppose for example that 0i = 0. Then 

tX\ = Xi + X\(x) = ^ l ( # ) , 

tX2 = #2 + Xi(x) = ^2(ff) , 

Let 

0<(a) = ti(x) + yPi(tx) + • • • + Ht1*-1*), * = 1> 2, 

where, of course, tx means (txi, • • • , /x2n). Obviously Q»-(#) = Q,-(fo). 
Moreover, it is easy to see that 

0i(#) = wxi + Fi(x), 

Œ2(#) = wx2 + F2(x), 

where Fi, F2 begin with terms of at least second degree. Hence the 
transformation 

Xi = Ql(x), X2 = ^ 2 ( # ) , #3 = Xz, ' ' ' , X2n = %2n 

* The condition is obviously independent of the choice of parameters at O. 
f Proper, because orientation is preserved. 
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is (1, 1) in the neighborhood of 0. We now examine the form which / 
takes in the variables x. We have, for i = 1, 2, 

tXi = üi(tx) = tii(x) = Xi. 

Therefore t leaves fixed the points of the (xi, x2) -plane. This contra­
dicts the assumption tha t the fixed points are finite in number and 
proves our assertion that no 0* vanishes. Hence if we form the matrix 
J{x)—I from equations (1), it follows immediately that its determi­
nant is greater than zero for (x) = (0). Hence O is of index + 1 . 

Consider now the /^-dimensional homology group Hh. I t possesses a 
decomposition of the form 

Hh= [yh
1] + . . - + [yfr]+Zh, 

where [y£ ] is an infinite cyclic group generated by the cycle yd and 
Zh is a finite group; Rh is the Betti number. The effect of / on the 7's 
is given by 

(2) tyh
l ~ Z) a fly J (mod Zh). 

i 

Let 0=X)( —1)* trace a^ ^ = | |a^' | | . In the Lefschetz theory of trans­
formations the number 0 is an important character of t, and when the 
fixed points are isolated, 0 equals the algebraic sum of their indices 
(Lefschetz, Topology, p. 272). In the case under consideration it fol­
lows that 0 ^ 0 . 

Now each matrix ah is of period ra; that is, its rath power is the 
identity. Consequently, the characteristic roots of ah are rath roots of 
unity. I t cannot happen that all these roots are + 1 , for then the 
trace of each ah would equal Rh and 0 would equal K, which is impos­
sible since /c<0. In exactly the same way we can say that not all the 
roots of all the matrices for td, (l^d^m — 1), can equal + 1 . 

The completion of the proof of the theorem now depends on two 
elementary theorems in number theory. Let tn — pf1, • • • , ps01* 
be the factorization of ra into powers of distinct primes. Let 
A( r a )=£ i a l + • • • +psa*. Then first, if /*i, • • • , JJLS is any set of in 
tegers whose l.c.m. is ra, we have 2jUi" = A(ra). Secondly, if R is any 
positive integer, the number of integers ra for which A(ra) ^ R is finite; 
we shall denote the largest one by x(^)« 

Consider the "roots of V ; that is, the totality of characteristic 
roots of aQy #i, • • • , an. Let the orders of these roots be Xi, X2, • • • , 
X5, • • • , where Xi, • • • , Xs are a maximal set of distinct orders. Let 
/ be the l.c.m. of Xi, • • • , Xs. Then Z = ra. For, each X; is a divisor of ra, 
therefore so is /. Suppose / <ra; then the roots of tl, being Zth powers of 
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the corresponding roots of /, are all 1, which is impossible. From the 
preceding paragraph it follows that X^Az^A(w). Let e{ be a root of 
order \iy (i = l, • • • , s); it satisfies an irreducible equation P»(e) = 0 
of degree X* with integer coefficients. P* must be a factor of one of the 
characteristic equations. Since Xi, • • • , Xs are distinct, so are 
Pi, • • • , P s ; therefore the sum of their degrees is less than or equal 
to the sum of the degrees of the characteristic equations; that is, 
S i ^ » = S i ^ * = ^> s a v - Hence A ( m ) ^ P and w ^ x ( P ) » which proves 
the theorem. 

Whether or not the theorem remains true, if we drop analyticity 
and allow continua of fixed points, remains to be determined. It seems 
very unlikely that analyticity is really essential in the argument. 

TYPE INVARIANTS OF PERIODIC TRANSFORMATIONS 

5. Let us now adopt a slightly different point of view. Two homeo-
morphisms / and t0 of S into itself are topologically equivalent, or 
belong to the same topological type if there exists a third homeo-
morphism r such that U — T~~HT. For arbitrary homeomorphisms, the 
problem of classifying types is too general to be of great interest, al­
though a number of characteristic properties of types can be de­
scribed in terms of the recurrence phenomena of repeated iteration 
(see for example [4]). But if / is periodic, one has invariants of a mere 
arithmetic nature, the period m for example. Suppose S is a circle. 
Then every periodic / of S into itself is equivalent to an orthogonal 
transformation.* In particular, if t preserves orientation it is equiva­
lent to a rotation through an angle Ik-w/rn, ( 0 < ^ m - l ) . If t0 (of 5 
into itself) is of the same type as t, then it is readily seen that m0 must 
equal m, and ko must equal ±k. Thus rotations of a circle through 
2ir/5 and AT/5 do not belong to the same topological type. But sup­
pose S is a torus with angular coordinates 0, 0 and that /, to are the 
rotations 0 '=0 + 27r/5, 0 ' = 0 + 4 7 T / 5 , respectively. Then t and to do 
belong to the same type (cf. Nielsen [20]). One can in fact see readily 
that if r is the homeomorphism 

0o = 20 + tf>, 

4>o == 50 -f- 3(j) 

of 5 into itself, then to = Ttr~~1. This suggests that the characteristic 
type invariants of periodic surface transformations will come to light 
only through a fairly penetrating analysis of surface topology. Such 
an analysis has recently been carried out by Nielsen [20 ] for orienta-

* First proved by J. F. Ritt [30]. 
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ble surfaces and transformations which preserve orientation; the in­
variants obtained are sufficient to settle the question of whether or 
not two given periodic transformations are of the same type. 

In Nielsen's work, the fundamental (Poincaré) group plays an im­
portant part. I shall now consider certain invariants which can be de­
fined purely in terms of boundary relations. These invariants are less 
sharp than those of Nielsen, but they have proved to be very useful 
in a number of connections and can be defined for spaces of any num­
ber of dimensions. 

Let g be a coefficient group for a homology theory in S, and let 
pit) be a polynomial in / with coefficients in Q; p is to be thought of as 
an operator on the chains and cycles of S. Consider an /^-dimensional 
cycle Yh such that p( / ) I \ = 0. Such cycles will be called p-cycles; in 
their totality they form an additive group § / / . A p-cycle I \ which is 
the boundary of a p-chain is "p-homologous to zero," Ta^O; denote 
the totality of these by §/?p. The group Hh

p = ̂ hp — ^>j?p is a "special 
homology group" characteristic of (5, /) and is, in fact, a type invariant 
of/. Of particular interest are the groups H*, (cr = l + / + • • • -\-tm~~1)1 

and H5
y (5 = 1—/), since they can be explicitly determined in a va­

riety of cases and bear certain useful reciprocal relations to each other 
(see [29]).* 

I have recently examined at some length [36 ] the case in which m 
is a prime and Sn = S is assumed to be sphere-like in the sense that its 
dimension is n and that it has the same homology groups as an n-
sphere. It can be shown that if Hh

p is modified by taking for §/?p the 
p-cycles which are p-homologous to zero modulo L, where L is the 
totality of fixed points, then if any group in the sequence 

S <r <x p 

Hn, Hn-i, Hn-2, ' ' ' , Ho y p = a or 8, 

vanishes, all those which follow it also vanish. Let r = r(§) be the di­
mension of the first group to vanish; I have shown that if Q = m, the 
integers reduced modulo m, the modulo m dimension f of L is r\ and 
if r>6, the Betti numbers (mod m) of L are the same, both locally 
and in the large, as those of an r-sphere; if r = 0, L consists of two 
points. If 53 is an actual three-sphere, then L is homeomorphic to an 

* Strictly speaking, the relation pT = 0 is not a topological one and in fact has little 
meaning unless 5 is a complex and / merely permutes the cells of .S among themselves. 
For situations of a much more general nature, the theory of the a- and S-cycles and of 
the corresponding special homology groups has been worked out in my paper [36]. 
See also [28] of Richardson, who first introduced the special groups relative to an 
arbitrary (but fixed) polynomial p. 

t Alexandroff [2]. 
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actual r-sphere, (r = 2 or 1), or consists of two points;* if / preserves 
orientation, r = 1 unless L is null; if t reverses orientation, r = 0 o r 2, 
and m can only equal 2. 

The methods which lead to these results will apply with slight 
modifications to the case in which m is composite, although the de­
tails are as yet unpublished. I must leave open, however, the problem 
of determining, in the general case, the dimensional and homological 
properties of L relative to coefficient groups other than m.\ In case 
Sn is assumed to be a simplicial complex and / is also simplicial (carry­
ing simplexes into simplexes), the results of the preceding paragraph 
do hold equally well when g is say the group of integers. In addition, 
if / preserves orientation, it can now be shown that the dimension of 
L is of the same parity as n. Whether or not this is true for the non-
simplicial case, even if "dimension" is taken to mean "dimension 
modulo m," I have as yet not determined. J 

If we no longer assume that Sn is sphere-like, but that it is still 
fairly regular locally, then although it is no longer true that L must 
have the homology groups of an r-sphere, locally the situation re­
mains the same as before, and one can show that L possesses to the 
same degree as Sn whatever regularity can be described by modulo m 
homology theory. If Sn is an orientable simplicial manifold modulo m, 
and if t is simplicial and L a subcomplex of Sn, then L consists of a 
finite number of non-intersecting orientable manifolds (mod m), and 
the dimension of each is of the same parity as n.% 

6. There is, as we shall see, a certain amount of interest in knowing 
the maximum number of components which L may have under cer­
tain conditions. Let us take m to be a prime and assume as above that 
Sn is an orientable simplicial manifold modulo m and that L is a sub-
complex, t simplicial. We may write L=LP

1+LP
2+ • • • +Lp*>+-M, 

where the L's are non-intersecting manifolds of dimension p and M 
is the sum of manifolds of dimension not p. I shall establish a certain 

* The proof of the statement about S3 depends on certain topological characteriza­
tions of one-dimensional manifolds by Alexandroff [3] and of higher dimensional 
manifolds by Wilder [39]. Only part of the theorem is stated and proved in [36]; 
the complete proof will be given elsewhere. 

t Partial results are obtained in [36] when c$ is the additive group of rational 
numbers. 

Ï Except for the theorem [36] that if m is prime, the dimension of L can be zero 
only if n is even. 

§ The dimension of L need not be of the same parity as n if Sn is non-orientable. 
Moreover, when m — 2, simple examples show that L can be non-orientable when Sn 

is orientable; this however does not contradict our theorem, since orientability cannot 
be determined by modulo two topology. 
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relation between kp and the group $fcp+\ of §5 (coefficients in m). Since 
m is a prime every homology group H is the direct sum of a number r 
of cyclic groups of order m; r will be called the rank of § . Let 
T/j-i = rank §p+i, and let Rp be the maximum number of non-inter­
secting ^-cycles in 5 linearly independent with respect to homologies. 
Then the relation in question is 

(1) kp g rp+l + Rp. 

To prove this, choose in each L* a £-cycle Yl which is not homolo­
gous to zero in L. I t may happen that some or all of the T's are inde­
pendent with respect to homologies in Sn. Suppose the T's so named 
that the first v of them constitute a maximal set independent in Sn. 
Let the remaining T's now be denoted by A1, • • • , A**, (v-\~ix~kp). 
There is a homology relation between each A* and the cycles 
r \ • • • , I>, say 

V 

(2) F(Aj+l) = bW + Y, <*/r', b* ^ 0; i = 1, • • • , », 
3=1 

where Fis the boundary operator. Now dAJ+i (see §5) is a cycle since 
FÔA = ÔFA = FA -tFA = 0. Moreover 

<r(ôA) = (1 + / + • • • + / ^ ( l - t)A = (1 - tm)A = 0. 

Therefore ÔA may be considered as an element in &p%i. Let 
C1, • • • , Cr, (T = TP%I), be a basis for Hp%i. Then we may write 

T 

(3) ÔA*+! ~ Y, c/C>', * = 1, • • • , ii. 

I assert tha t ju = T- For suppose /x>r. Then there exists a linear rela­
tion among the forms in the right of (3) with coefficients gi, • • • , &» 
not all zero. Hence from (3) we have 

This implies the existence of a chain Bp+2 such that aB = 0 and 
FB =^gioAp

i+i. The relation (TJB = 0 implies the existence* of chains 
Xp+2 and Xp+2, the latter in L, such that J3 = ô X + X L . Thus 
F(ôX) + FXL=ô(52giAp

i+1). Now if ^ ^ P + I contains a cell in L, 
that cell will appear in SQ^gv^+i) with coefficient zero. Similarly, 
F(5X) = ÔFX contains no cell of L. Hence FXL = 0, and the bounding 
relation just written takes the form F(bXP+Î) =^giôAp

i
+i. Let 

[36], p. 141. 
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Zp+i = FXp.h2 — ^giA*. Then bZ = 0, so that we may write 
tfp+i+Eft.!, (ULcL)* Now 

0=FFX = P ( E ^ + Z ) 

= ^ ( Z ^ 0 +FaU+FUL 

(4) 

= E 2 / ^ + E f l / H + M + W . 

Since the A's, the T's, and F(UL) are cycles in L, Fall is also such a 
cycle. Let £ p be a simplex occurring in Fa U with a non-zero coeffi­
cient; Ep must occur in the boundary of at least one of the chains 
U,tU, • • • , r ^ E / , say 

FPU = yEp+ • • • , y y£ 0, 

where the dots denote a chain not containing Ep. We then have 

<rFU = P'((TFU) = a(FtW) = yaEv + • • • . 

Since Ep is invariant under t, it follows that aEp = mEp = 0 (mod m), 
and we conclude that aFU = 0. Thus (4) becomes 

Z giO*^ + E a,*rA = - FUL; 

hence the expression on the left is homologous to zero in L. Therefore 
the coefficients of the A's and T's must be zero. Since 6*V0 we con­
clude that g» = 0, (i = l, • • • , M)» which is impossible. This completes 
the proof of the inequality fi^r; and since v^ Rp, (1) is now estab­
lished. 

Consider the matrix a,- of (2), §5, defined now relative to the coeffi­
cient group m. Let g / be the rank of e —#,-, and qf the rank of 
e+Gj+aj2+ - - • +a,-wl~1 (e is the identity matrix). It has been shown 
elsewhere [29] that 

(5) Tp+i ^ Rp+l + Rp+2 + ' ' ' + Rn — Çp+l — Qp+2 — ' • ' — qn , 

p = 8 or cr, 

where the i^'s are the modulo m Betti numbers of Sn. If we combine 
(5) with (1), omitting the g's, we obtain 

(6) kp £ Rp + RP+i+ • • • + * „ . 

Thus we have the result that there exists, at least if m is prime, an 
upper bound for the number of p-dlmensional components of L which is 

* [36], p. 141. 
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Independent of the period m and, in fact, depends only on the topological 
structure of S. Notice that if m = 2, orientation can play no part in the 
argument, and (6) then holds equally well for non-orientable mani­
folds. 

Since RQ = RQ = 1, we have the result that there can be at most 
Y^Ri isolated fixed points. Suppose S = S2 is an orientable closed sur­
face of genus p. Then 

Ri = p, Ro = R* = 1, Ri = 2p. 

Hence there can be at most p + 1 pointwise invariant curves and 
2 ^ + 2 isolated invariant points. 

Let be homogeneous coordinates for a complex projec­
tive space PS1 and let V be an algebraic variety defined by equating 
to zero a finite number of polynomials i n XQ, * * * > ^s 

with real coeffi­
cients. Let us assume that, considered as a real locus in a space 
of 2s real dimensions, F is a manifold modulo 2. The transforma­
tion /: (xo, • • , x8)—>(xo, • • - , # * ) , where x is the complex conjugate 
of x, is of period two and induces a homeomorphism of V into itself, 
the fixed points of which constitute the real folds or branches of V. 
Formula (6) then gives an upper bound for the number of connected 
real branches which V may have. In particular, suppose F is a real 
algebraic surface. If V has no algebraic singularities, the manifold 
condition is satisfied (cf. Zariski [41 ], p. 102), and we can say that 
there are at most R2+R3 + I connected real branches (the R's refer 
of course to V considered as a manifold of four real dimensions). If V 
is a real algebraic curve, it need not be restricted with regard to alge­
braic singularities, since V may now be replaced by its Riemann 
surface which is in any case a manifold. We obtain then the theorem 
of Harnack that a real algebraic curve of genus p can have at most 
p + 1 real branches.* 

* We have here taken it for granted that V can be subdivided into simplexes such 
tha t the conditions stated at the beginning of §6 are satisfied. There is no difficulty in 
showing that such is the case by means of the methods used by Brown and Koopman 
[7] in connection with the triangulation of analytic loci. As a matter of fact the results 
stated hold equally well for non-simplicial spaces and triangulations, and the assump­
tions used were only a convenience for exposition. It seems likely also that the condi­
tion tha t F be a manifold could also be dispensed with. 

I t should be pointed out that little is known about the modulo two Betti numbers 
of algebraic varieties whereas the non-modular Betti numbers are related to the bi-
rational invariants of V. I t would therefore be of interest to find upper bounds for 
kp in terms of Betti numbers of the latter type rather than the former. 

The transformation Xi—^xi was used by Lefschetz [15] in determining the number 
of real folds of a real abelian variety. 
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CYCLIC MANIFOLDS 

7. We have seen that when 5 is a simple closed curve, the types of 
periodic transformations can be explicitly enumerated (§5). Let us 
consider the problem of enumeration when 5 is an odd dimensional 
sphere S2n-u and / is without fixed points. To make matters as simple 
as possible, let us suppose that / is a rotation. We may assume that S 
lies in a euclidean space E2n. If a euclidean coordinate system in E2n 

is properly chosen, / will be represented by the equations (1) (with the 
X's identically zero). The d's are multiples of 2ir/m, say 

02*-i = ai-2T/M, 1 ^ ai ^ m — 1; i = 1, • • • , n. 

The a's will be called indices of t\ we shall assume that they are prime 
to m. If /' is a second rotation of 5 with period m, and if /' has a set of 
indices b\, • • • , b2 which, except for order and sign, are the same as 
«i, • • • , öB, then t and tf are topologically equivalent.* Whether or 
not the converse is true remains, I believe, an open question of con­
siderable interest. If has recently been shown f that the converse is 
true in a combinatorial sense. That is, if for 5 there exist cellular sub­
divisions 2 and 2 ' identical in structure, with 2 invariant under /, 
2 ' under tr, and if there is a homeomorphism r of 5 into itself such 
that r 2 = 2 ' and such that t' =rtr~1

J then the a's and b's are the same 
modulo m except for order and sign. But if one assumes only topo­
logical equivalence, then the most that is known at present is that 

#1̂ 2 • • • an == ± bib2 • - • bn (mod m). 

This was first proved by de Rham [24] by means of the theory of 
looping coefficients. One can also establish this relation in a very ele­
mentary manner by means of our special homologies. For this pur­
pose three simple lemmas are sufficient. Let us assume for the 
moment that 5 possesses a simplicial subdivision which is invariant 
under t. By a natural sort of extension, t may be thought of as carry­
ing chains into chains in such a way as to preserve boundary rela­
tions. Taking as coefficient group either the integers or the integers 
modulo m, we have the following lemmas: 

LEMMA 1. If ÔX is a a-cycle, then FX is a d-cycle; if 8X~0 then 
FXsyQ. The same holds with a, 8 inter changed.X 

LEMMA 2. If X is a chain, then SX and (\—ta)X are a-chains; if 
they are cycles, then (l—ta)X~a(8X). 

* In fact they are equivalent under an orthogonal transformation, 
t de Rham [25]; see also Reidemeister [23], Franz [ l l ] . 
t See [36], p. 143. 
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PROOF. Since <r = <jt = (jta, we have <r(8X) = <r(l — ta)X = 0, which 
proves the first assertion. To prove the second, let F be a chain 
bounded by dX. Then öFY = 58X. Since o"o = 0, we may write 
8ôX~0f or (1 — t)ôX~0, or thX^bX, and on repeating the argument 
we have tlbX~hX. Hence 

(1 - ta)X = (1 + / H + to-^ôX ~ aôX. 

LEMMA 3. If XQ is a Q-chain consisting of a single 0-simplex with 
coefficient ± 1 , and if pöXo^O, then £ = 0 (mod m). 

PROOF. Every cr-chain is of the form h V ([36], p. 141); hence there 
exists a one-chain Y\ such that FôYi = pôX0. Let Z0 = FYi — pX0. 
Then ôZ0 = 0; hence Z0 = crUo ([36], p. 141). Now the sum of the 
coefficients of FY\ is zero (this being the case for the boundary of 
each individual one-simplex). Moreover the sum of the coefficients 
of ZQ = GUQ is* zero modulo ni, whereas the sum of the coefficients of 
pX0 is ±p. Hence p^O (mod m). 

Suppose now that H s a rotation with indices ai, • • • , an prime to 
m. It is easy to show (see [25], p. 741, footnote) that there exist 
chains X0, • • • , X2n-i such that (i) crX2n_i = ±S 2 n - i ; (ü) ^o is a single 
vertex with coefficient ± 1 ; and (iii) 

FX2h-i = (1 ~ t«k)X2h„2, A = 1, • • • , », 

FX2h = (rI2A_i, h = 1, • • • , n, 

where an^ar1 (mod m). Let us call any set of chains satisfying these 
three conditions a normal set with indices a». Suppose there is a sec­
ond normal set Y with indices b{. Then 

(2) n ^ = ± H h (mod tn). 

For we have S2n-i = ±crX2n„i = ±o"F2n-i. Hence ±orX2n_i'y<rF2w_i ; 
and from Lemma 1 and (1) we have 

± (1 - /*»)X2w_2 ~ (1 - ^ ) F 2 n _ 2 , ft, = brT1. 

Hence from Lemma 2, ± (1— t)anX2n-2~(l—t)l3nY2n-2l and from 
Lemma 1, ±<ranX2n_3'yo"/3nF2n_3. Again, from Lemma 1 then Lemma 
2, we obtain ±anan-iôX2n-4~Pnt3n-iàY2n„t and finally 

± an - - • a 0 ô X 0 ~ Pn ' ' ' j3oôF0. 

* To each vertex £o* there are associated two 0-chains +Eoi and —EQ\ If 
tEoi = Eo1\ it follows, from the condition that t preserve bounding relations, tha t 
/ ( + £ o 0 = +£o>\ Thus ( 1 + * + • • • +*»-i) ( + £ 0 * ) * + J 5 V - W + • • • ; hence the 
sum of the coefficients of aEoi is w. 
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From Lemma 2 we conclude that ±11^=1X3* (mod m)t and from 
this (2) follows. 

Suppose now that t' is a rotation of £2*1-1 with indices &i, • • • , bn. 
Suppose r is a homeomorphism of S with itself such that t = r~HrT. 
Imagine first that r carries simplexes into simplexes. If F0, • • • , F2n-i 
is a normal set relative to t', with indices &»-, then r~l Fo, • • • , r"1 F2n-i 
is a normal set relative to / with indices still b{. Hence ü&»= ± I I a * 
(mod m). In case r is not simplicial, the images of the F's under r are 
no longer chains of the complex 5 but will become so after a suitable 
deformation. The deformation can in fact be so chosen that the new 
F's again constitute a normal set for t with indices b{. 

The larger questions connected with the equivalence problem for 
rotations are of fundamental interest in topology. It has been known 
for some time that two manifolds, which are identical so far as the 
homology invariants and the fundamental group are concerned, need 
not be homeomorphic (J. W. Alexander [l]) . Consider a space 5 and 
a periodic / of S into itself. The so-called modular space S(t) is con­
structed by identifying points which are images of each other under 
powers of /. If 5 is a sphere of an odd number of dimensions and t a 
rotation of period m and with indices prime to m, then 5 (<) is called 
a cyclic manifold of order m. It can be shown (de Rham [24]) that 
two cyclic manifolds 5 ( 0 and S(t,) of order m have the same Betti 
numbers, the same torsion coefficients, and the same fundamental 
group. Moreover, a necessary and sufficient condition that 5 (<) and 
Sitf) be homeomorphic is that there exist an h prime to m such that th 

and /' are topologically equivalent.* Suppose the indices of / and t' 
are at- and &,-. Those of th are then hat. Hence by S(t) and S(<,) they can 
be homeomorphic only if the relation ±Y\ai = hnbi (mod m) has 
a solution in h (cf. de Rham [24]). Suppose for example that 5 is 
a three-sphere, that m = 5, and that the indices are (1, 1) for / and 
(1, 2) for/'. Then 5 3

( 0 and 53
(<,) are not homeomorphic, since the equa­

tion + 1 = 2&2 (mod 5) has no solutions.f 
The problem of finding new topological invariants of manifolds is 

of course a fundamental one. In focusing attention on cyclic mani­
folds we have shown the existence of invariants which are independ­
ent of the ordinary ones; they are implicit in the relation (2). The 
existence of a solution for (2) is, however, not sufficient to ensure 

* For a given S, the modular space S^ is a type invariant of t and the special 
groups ^ j § ô (§5) are closely related to the ordinary homology groups of S^K These 
relations have proved to be particularly useful for determining certain relative homol­
ogy characters for cyclic and symmetric products (see [29]). 

f This is essentially the example of Alexander [l ]. 
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homeomorphism. If one is content to ask, when are two cyclic mani­
folds equivalent in a strictly combinatorial sense, one finds a complete 
answer in recent noteworthy papers of Reidemeister [23], de Rham 
[25], and Franz [11 ]. Whether or not these combinatorial results are 
really topological remains to be determined. 
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