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CARATHÉODORY ON GEOMETRICAL OPTICS 

Geometrische Optik. By C. Carathéodory. (Ergebnisse der Mathematik und ihrer 
Grenzgebiete, vol. 4, no. 5.) Berlin, Springer, 1937. 4 + 104 pp. 

As a formal introduction to the mathematical analysis of the principles of geo­
metrical optics this comparatively slender volume, comprising little more than a 
hundred pages, is a contribution of unusual value that should be welcomed by all 
students of the subject. The author's qualifications for his task are undoubted. On 
the other hand, in order to read this purely mathematical treatise with advantage 
the student must be qualified too by a due initiation in the realms of both geometry 
and optics. The author rightly considers that the application of the theory in the 
design and construction of optical instruments lies wholly outside the scope of his 
book. The basis of his whole argument is indeed derived from the brilliant specula­
tions as to the nature of light of two great contemporary philosophers of the latter 
half of the seventeenth century, Pierre Fermât (1601-1665) and Christian Huygens 
(1629-1695). According to the former "la nature agit toujours par les voies les plus 
courtes" (principle of the quickest route or least time), whereas, according to Huy-
gens's "principle of accumulated disturbances," the effect at any place in the all-
pervading luminiferous ether is to be regarded as the resultant of the innumerable 
partial or secondary influences that concur there from all directions (method of con­
struction of the enveloping wave-front). Starting from these two general principles 
of the propagation of light (although as a matter of fact Huygens's principle may be 
deduced from Fermat 's) , the author of this monograph on geometrical optics regards 
his task as finished when he has developed the laws of optical imagery of the first 
order (as Gauss did for a symmetrical optical instrument in 1841), not attempting 
therefore to pursue the intricate investigation of the aberrations of the third order. 

The seventeenth century was indeed a notable epoch in optical science. It was 
ushered in, so to speak, by the invention of the telescope, inseparably associated 
with the names of G. Galilei (1564-1642), J. Kepler (1571-1630), and C. Scheiner 
(1575-1650), to be followed so soon by the inventions of the compound microscope 
and the magic lantern. The year after Galileo died Sir Isaac Newton (1643-1727) 
was born, and thus the entire century was contained within the lifetimes of these two 
extraordinary men. In 1621 an eminent Dutch professor in the University of Leyden 
named Willebrod Snell (1581-1626) had succeeded at last in finding the elusive law 
of the refraction of light, but he died without publishing the result; and so the sine 
law of refraction was not generally known until it was first publicly announced by 
René Descartes (1596-1650) in his Dioptrics, which appeared in 1637. Entirely igno­
rant of Snell's earlier investigations, this great philosopher had derived the law inde­
pendently in consequence of his theory that light was a pressure transmitted through 
the so-called plenum of space. At that time it had not yet been established that light 
travelled with a finite velocity; nevertheless, according to Descartes' hypothesis its 
speed would have to be greater in the denser of two media, exactly contrary to the 
inference afterwards drawn from the wave theory of light as developed by Huygens. 

In the two decades that succeeded the publication of Descartes' book, the sine 
law of refraction was completely verified by experiment. As early as 1657 Fermât 
had sought to formulate a general principle or law of economy for the transmission of 
light as the foundation of the science of dioptrics. However, inasmuch as his con-
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ception was diametrically opposed to the theory of Descartes, Fermât hesitated to 
pursue his speculations for fear tha t they would necessarily lead to conclusions that 
were inconsistent with the ascertained law of refraction. Accordingly, some years 
later, when he was induced to resume the study of the question (1661), he was much 
surprised and gratified at the same time to find that as a matter of fact his minimum 
hypothesis led to precisely the same law of refraction as Descartes had deduced from 
totally different assumptions. However, in spite of this encouragement Fermât con­
tinued to be perplexed by some minor difficulties in the way of his theory, because 
examples could be adduced in which the route taken by the light, instead of being 
the quickest, was on the contrary the longest of any. This particular difficulty was 
pointed out again long afterwards by Sir William Rowan Hamilton (1805-1865) in 
the following passage taken from one of his famous papers published in 1833: 

"If an eye be placed in the interior but not at the centre of a reflecting hollow 
sphere, it may see itself reflected in two opposite points, of which one indeed is the 
nearest to it, but the other on the contrary is the furthest; so that of the two different 
paths of light, corresponding to these two opposite points, one indeed is the shortest, 
but the other is the longest of any. In mathematical language, the integral called 
action, instead of being always a minimum, is often a maximum; and often it is 
neither the one nor the other, though it has always a certain stationary property, 
• • • . " (Hamilton's Mathematical Papers, vol. 1, edited by A. W. Conway and J. L. 
Synge, Cambridge, 1931, p. 318.) 

According to Huygens' wave theory, the optical length between two points in 
the path of a ray of light is equal to the distance that would have been traversed if 
the disturbance had been propagated with the constant velocity of light in vacuo; 
the analytical expression of this distance being therefore the integral fn-dl, where n 
denotes the (constant or variable) index of refraction of the actual optical medium 
and dl denotes an element of arc of the trajectory. Now Fermât made the mistake of 
assuming tha t this integral was invariably a minimum function. Had the calculus of 
variations been invented then, doubtless Fermât, keen mathematician that he was, 
would have formulated his principle correctly by saying that the necessary and suf­
ficient condition tha t a linear path shall be a possible route of a ray of light is tha t 
the first variation of the optical length of any portion of the trajectory must be 
vanishingly small, tha t is, bfn-dl — 0. In other words, to use Hamilton's mode of ex­
pression, the true theory is a principle of stationary action rather than of least 
action. 

The fact that a normal congruence of rays remains a normal congruence after re­
fraction or reflection, as announced by E. L. Malus (1775-1812) in 1808, that is, the 
fact that the wave surface is a surface of stationary action which is therefore cut 
orthogonally by rays of light emanating originally from a point-source, may be de­
duced immediately from Fermat 's principle. 

All these questions, including also a preliminary reference to Hamilton's char­
acteristic function and a brief discussion of Descartes' aplanatic optical surfaces of 
revolution (n-l±nr4r = constant), are competently treated in the first two chapters of 
Carathéodory's book. The three remaining chapters which follow in logical order are 
devoted to the theory of optical imagery in its various aspects, comprising such 
subjects as the so-called "Eikonal" functions of H. Bruns (1848-1919), Maxwell's 
"fish-eye," and Gauss's theory. 

After all is said and done, Hamilton's classical papers published about a century 
ago in the Transactions of the Royal Irish Academy contain the complete theory of 
systems of rays of light. This masterly work remains for all time, but Hamilton's 
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writings, it must be admitted, are not easy reading and for that reason are not gen­
erally known even to this day. In the opinion of the present reviewer, not the least 
merit of Carathéodory's book on geometrical optics is that it is a comparatively easy 
means of access to Hamilton's "grand theory," as it was called by P. G. Tait (1831— 
1901) in his essay on Light in the ninth edition of the Encyclopaedia Britannica. 

J. P. C. SOUTHALL 

VOLTERRA AND PÉRÈS ON FUNCTIONALS 

Théorie Générale des Fonctionnelles. Vol. 1. By Vito Volterra and Joseph Pérès. Paris, 
Gauthier-Villars, 1936. 12+357 pp. 

The book at hand is the first of a sequence of three volumes entitled Théorie 
Générale des Fonctionnelles, written jointly by Volterra and Pérès. The present volume 
was published in the Borel series of monographs on the theory of functions. The sec­
ond and third volumes have not been published as yet. 

Volterra was one of the pioneers in the study of the theory of functionals. In 
1913 he published in the Borel series his first book on the subject. I t was entitled 
Leçons sur les Fonctions des Lignes and was reviewed by Professor Bliss in this 
Bulletin, vol. 21 (1915), pp. 345-355. In 1924 Volterra and Pérès published jointly 
a book on composition of functions and permutable functions. In 1926 Volterra gave 
a set of lectures on the theory of functionals at Madrid. These lectures were published 
in book form in Spanish. A translation and revision of them was given in 1930 in a 
book entitled Theory of Functionals. This book is descriptive in character and con­
tains no detailed proofs of the subject matter discussed. The purpose of the three 
volumes, of which the present volume is the first, is to give a systematic and detailed 
study of the material found in the books described above, particularly the last. The 
authors, of course, will incorporate as much as possible of the newer developments in 
the theory of functionals. 

The subject matter to appear in the three volumes is to be divided as follows. 
The first volume is devoted to the general theory of functionals and to the theory of 
integral equations. In the second volume the authors will develop the theory of com­
position of functions and its relation to integral equations, the theory of integro-dif-
ferential equations, and extensions of the theory of analytic functions. In the third 
volume they will be concerned chiefly with the completion of the theories developed 
in the first two volumes and with applications of these results. In particular, they 
will discuss the modern theories of the calculus of variations and of analytic func­
tionals and their applications to mechanics, to mathematical physics, to biology, to 
statistics and political economy. 

The present volume is divided into two parts. In the first five chapters the authors 
develop a general theory of functionals, particularly functionals of curves. In the 
remaining six chapters they are concerned chiefly with the theory of integral equa­
tions. Chapter I is introductory in character and contains principally a development 
of the concept of functionals. Here and elsewhere the authors give numerous ex­
amples. Chapter II is devoted to the study of elementary properties of metric spaces 
and to the concepts of continuity and semicontinuity. The theory of the Lesbesgue 
integral is developed. The method used is a modification of one given by Riesz. In 
Chapter III the authors discuss linear functionals of curves and also homogeneous 
functionals of higher degree. The representation theorems of Hadamard and Riesz 


