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INEQUALITIES SATISFIED BY A CERTAIN
DEFINITE INTEGRAL

BY G. H. HARDY AND NORMAN LEVINSON¥

1. Introduction. In this note we solve the following problem.
Suppose that

0= <a<: - <d2n+1§.17
_ (@ —a)(w—a) - (% — as)
) f(x) = (# — a)(w —as) -+ - (x — a2n+1))

u»:fWﬂ@Mm, 0<t<1.

Then what are the best inequalities satisfied by J(¢)?
We prove the following theorem:

THEOREM A. If f(x) satisfies (1) then
(G + 3901 — 3) 2

<J@) £ —
(1 — Hrii 1—¢

with inequality except when

2t
i) = = 1=
_ o TG+ -3
f=) = x(x — 1)’ 70 = 1 — pnl2

The integral J(#) occurred in a recent paper by Levinson.}
Levinson proved that

J(@) < 7 t’
and indeed that

‘ ) |t < ——
ﬁ|ﬂw+m1<1_t

* National Research Fellow.
1 Levinson, On non-harmonic Fourier series, Annals of Mathematics, (2),
vol. 37 (1936), p. 922.
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for any real vy, and stated without proof a more precise, though
still not the best possible, inequality. Here we confine ourselves
to the case y =0, but our results are the best of their kind. We
prove them by two methods, one “real” and one “complex”.

2. A Theorem of Boole. LEMMA 1. If f(x) satisfies (1), then

® ® d
@ [ riy@las = [ F<y>y—f

whenever (1) F(y) is defined for all values of v, and (ii) either in-
tegral exists as a Lebesgue integral.

Lemma 1 is essentially the same as a theorem of Boole.*

There are two other definitions of f(x) equivalent to that of
§1. In the first place, as we can verify at once by resolving f(x)
into partial fractions,

n

3) J@) =2 ———
y=0 ¥ — Gayi1
where
(4) a, >0, > a = 1.
This is the form which we shall generally use here. Secondly
1 z By
g(x)=7(;)—=x-—y§——x_a2yf

where 8,>0. If we write 1/y for y and G(y) for F(1/y), then (2)
becomes

f_:G{g(x)}dx = fﬁ:G(y)dy,

which is Boole’s formula.

To prove Lemma 1 we observe that, after (3) and (4), the
graph of f(x) consists of #+2 descending pieces corresponding
to the intervals (— «, a1), (a1, a3), - - -, (@241, ), the corre-
sponding intervals of wvariation of f(x) being (0, — ),

* G. Boole, On the comparison of transcendents, with certain applications to
the theory of definite integrals, Philosophical Transactions of the Royal Society,
vol. 147 (1857), pp. 745-803. See in particular p. 780. Boole’s very interesting
memoir has been forgotten, and his results have been rediscovered, wholly
or in part, by a number of later mathematicians.
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(0, —®), -+, (0, 0); and that, when x moves from —
to «, y moves, in all, n+1 times over the same range. The
line f(x) =y cuts the graph of f(x) in z+1 points x1, xe, * -+, Xnt1;
and

J s = [ rorre 2,

where J
x
P(y) = — y22(~>
v dy =2z

We have to prove that*
P(y) = 1.
It is plain that, if f(x) =y, then
(5) :VIyI (@ — an1) — 2 a1 (¢ — agurr) = y]] (& — ).

v BFEY v

Hence, first, equating the coefficients of x”~! and using (4), we
have

1

(6) va“zazv+1=;‘

Next, (6) is an identity in y when x,(y) is substituted for x,.
Hence, differentiating this, we obtain

It follows that P(y) =1.

3. The Underlying Identity. In what follows it is convenient
to symmetrize our analysis about the origin, which we can do
by writing x —% for x. We have then

1/2 @
) J(t)=f1/2|f(x)|‘dx, =L a>0Ta=1,

and

(8) —%§al<a2<-~<a2n+1§_%.

* We are indebted to Professor Bohnenblust for a simplification of the proof.
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LemMA 2. If f(x) satisfies (7) and (8), then
2¢ ® 2
© 0 =1 = [ {5+l l- Tl

Suppose that e is small and positive and that £ and 5 are the
largest and smallest roots of f(x) = € and f(x) = — ¢ respectively.
Then £¢>1 and < —1. Also

1 éz o, Ces 1 ’
£+ 3 £ — azp £E—3
and so
1 1<E<1+1
€ 2777 ¢ 2’
1
(10) ¢=—+40Q1),
€

where the O refers to the limit process e—0. Similarly
1

(11) n=——+0(Q).
€

Define f. by the relations
fe=1, (rlzea;  ro=0, ([f]<9.
Then, by Lemma 1,

0 © Zet—l
t = t=2dy = .
J das=2 [ Iylay = 7

Hence

1/2 1/2
J@) =f | tdx = lim | 7 |tdx

(12) o 2et—1 "’OE o —1/2
“im i (L [ L)y
Now
fl@) = a4+ 0@,  |f@| =]z +0( x|+
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for large x. Hence, by (10),
£ 1 1 1—t 1\1—¢
Jotee= Tl o) - () o
1/e 1 -1 € €
= O(¢),

and we may replace £ by 1/¢in (12). Similarly we may replace 7
by —1/e Hence

10 = tim {7 = [+ - 9o}

0

2¢t-1 e dy
= lim { — Zf —
-0 1 —¢ ye &t
1/e 2
- [ {1l e o= Zhast,
12 x
which is (9).

4. A Lemma. LEMMA 3. If |x| >% then
() = | f@ [ +]1(= D)

is (for every x) least and greatest when f(x) is 1/x and x/(x*—%
respectively.

We may suppose x>%. We consider the pole 4 of f(x) nearest
to an end of (—1%, 3). If we suppose, for example, that 4 >0,
then 4 =az,y1. If

1 1 1 1

E‘_— ) I = = ) E:

x—a x—l—a’ x— A x+ A4

11

then all these numbers are positive and

(13)

I | g
v

I3
for any pole @ other than 4. If
V() = ¢() = | @) [ + [ f(= o) |

=<ind>t+<zx:d>i
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dy(4)

Y R U ) [
t dd (5 — A)? (x + A)2

where A is the a corresponding to 4. This will be positive if

BN /Y e\
(_.'E'—’> > <Z aE’) ’
and this is true on account of (13).

Hence we decrease ¢(x) by moving 4 to the left, to the next
pole, or to the origin if there is no other positive pole. Similarly,
if A were negative, we should decrease ¢(x) by moving 4 to
the right. It follows by repetition of the argument that ¢(x) is
least when all the a’s coincide at the origin, and f(x) =1/x.

Similarly ¢(x) is greatest when all the a's are at one of the ends
of (—1%, 1). In this case

) a " 1—a x— B
x) = =

x—3% x+i at—1
where f=a—%, 05a <1, lﬁl =<%. Finally

o — Bl +|x+ 8] <2]a]

if |x| >%, 870, so that the true maximum of ¢(x) occurs when

1@ = 5
S. Proof of the Inequalities. We can now prove the theorem.
We take the interval as (—3%, 1), so that the two critical func-

tions are

1
fi(x) = —> (%) = ——
X xX° —

It follows from (9) and Lemma 3 that

t

J@) =

>

with inequality unless f=f;. Also
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1/2 1/2
td —_— ld
f_mm . f_ww .
- fw(lfz(x)l’ + ] o= ) | = f@) | = | f(= ) |9da,

by (9), and the last integral is positive, by Lemma 3, unless
f=fs. Finally

1/2 1/2
J lplas=
—1/2 —1/2

by an elementary calculation.

® TG+ I - ¥

1 — p)x/2

x2— 1

6. Alternative Proof of the Underlying Identity. There is an-
other proof of (9) by complex integration. We integrate

[ {ue - %}dx

around a contour C composed of (i) small semicircles of radius p,
above the real axis, around the singularities ey and 0, (ii) a
large semicircle of radius R, above the real axis, around 0, and
(iii) the parts of the real axis between these semicircles. We sup-
pose

(f(x))* > 0, «t >0

for large positive x, and make p—0 and R— e in the usual man-
ner. Then (f(x))! is positive along

(aly az) (08, 04), tt oty (a2n+ly °°)

and has the argument of e~*% on the rest of the axis, while x* is
positive for x>0 and has the argument of e~*"¢ for x <0. We
thus obtain

(14) 5@t + etila(t) = 0,
where
no=(f+ [T+ [T l+fa2"+1>'f(x)|‘dx

- flﬁxl <|f(x)l |—T)dx,
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I() = ( f_m+ f + o+ f W)lf(x)l‘dx
‘f_w |x|»4r f_:m(‘f(x)l \11)‘”

If we equate imaginary parts in (14) we obtain

(L [T ) ta

- w(lf(— o - I—Jc"l>dx

and if we multiply by e!™%, and equate imaginary parts, we obtain

(oL,

) /() |1

= 12t_—1t _ f;(lf(x) |t I i|t>dx.

Finally (9) follows by addition.
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