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CYCLIC RELATIONS IN POINT SET THEORY* 

BY E. C. STOPHER, JR. 

I. Introduction. The formula 

(1) <f>c<f>c4>c4>A = 4>c<f>A, 

where c denotes the operation of taking complements and 0 is 
an arbitrary operator, is of considerable interest in the study of 
sets of points. Kuratowskif proved that the formula holds for 
a postulated closure or extension function. ZaryckiJ established 
the formula in case <j>A is the "interior" of A and Sanders § es­
tablished it for a general derived set operator satisfying the 
postulates : 

I . d(A + B) = dA + dB, 

I I . d2A S dA. 

In this paper we shall follow the established || practice of post­
ulating a derived set operator d, subject to I and II , and, using 
a notation introduced by Chittenden, define certain terms as 
follows : 

Identity : \A = A ; 
Complement'. cA = S — A (S denotes the entire space) ; 
Extension :̂ f eA = A + dA; 

* Presented to the Society, April 10, 1937. 
t C. Kuratowski, Sur Vopération Â de Vanalysis situs, Fundamenta Mathe-

maticae, vol. 3 (1922), pp. 182-199. 
% M. Zarycki, Notions fondamentales de Vanalysis situs, Fundamenta 

Mathematicae, vol. 9 (1927), pp. 3-15. 
§ S. T. Sanders, Jr., Derived sets and their complements, this Bulletin, vol. 42 

(1936), pp. 577-584. 
|| F . Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti del 4 Congresso 

Internationale dei Matematici, Roma, 1910, vol. 2, p. 18; Chittenden, On gen­
eral topology and the relation of the properties of the class of all continuous func­
tions to the properties of space, Transactions of this Society, vol. 31 (1929), 
pp. 290-321. 

1f F. Hausdorff, Mengenlehre, pp. 109-129. Under the postulates given, the 
derived set corresponds to HausdorfFs set of jö points, Ap. The extension corre­
sponds to his a points, Aa. Similarly, hA corresponds to An, jA to Aj, bA to Ar 

(border is a translation of the German word "rand"), kA to Ah, and s A to As. 
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Interior: iA = AcdcA; 
Concentrated part: h A = AdA; 
Isolated part: jA = AcdA; 
Border: bA = AdcA ; 
Frontier: f A = AdcA + cAdA; 
Kernel: kA = J^B^A, such that B^ dB; 
Separated part: s A — AckA. 

In §§2-7 it will be shown that each of these operators except 
b and h satisfies the Kuratowski formula. I t might be pointed 
out that these operators do not all have the same basic proper­
ties. In contrast to Postulates I and II we have, for example, 

HA + B) ^ iA + iB, 

i(AB) = iAiB, 

i2A = iA, 

f(A+B)£fA+fB, 

f A £fA. 

This list of operators is by no means a complete list of opera­
tors satisfying the Kuratowski formula, as can be readily seen 
by considering the formula 

(2) pA = pA. 

We have the proposition that if an operator 0 satisfies formula 
(1) ((2)), its transform* satisfies (1) ((2)) and its complement 
satisfies (2) ((1)). We make use of this proposition in §8 to ob­
tain additional operators satisfying the Kuratowski formula. 

Examples will be given in §9 to show that the b and h opera­
tors do not in general satisfy the Kuratowski formula. I t will 
be shown in §§10 and 11 that each of (bcybA and (hc)phA with 
increasing /3 defines a set. 

2. Identityf Complement. The identity operator can be used 
in the Kuratowski formula since, on account of the relation 
c2A =A, each side of the equation reduces to cA. I t is readily 
seen also that the complementary operator can be used in place 
of (/>, each side of the equation again reducing to cA. 

* An operator 0 is said to be the transform of an operator \f/f if <j>A = c\f/cA ; 
it is the complement of the operator f, ifJ>A —c^A. 
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3. Extension, Interior. The general "defined" extension func­
tion satisfies the Kuratowski formula since this function satisfies 
Kuratowski's postulates I, II , and IV, which Kuratowski* 
showed were sufficient. We immediately have 

icicle iA = ici A , 

since the interior and extension operators are transforms of each 
other. 

4. Frontier. Since fcA=fA, fA=bfA, and b2A=bA, both 
fcfcfcfA and fcfA reduce to bfA, establishing the formula 

fcfcfcfA =fcfA. 

5. Isolated Part. By definition, 

jA = AcdA, 

cjA = cA + hA, 

jcjA = (cA + hA)cdcAcdhA 

= cAcdcAcdhA(cdjA + djA) + hAcdhAcdcA 

— cAcdcAcdhAcdjA + cAcdcAcdhAdjA 

+ AdAcdhAcdcA 

= cAcd(cA + hA + jA) + cAcdcAcdhAdjA 

+ AdjAcdhAcdcA 

= cAcdS + djAcdhAcdcA(cA + A) 

= ƒ c4 + jdScdcA . f 

Replacing 4̂ by cjA, we have 

jc/V^ = JjA + jdScdjA 

= J A + ydScrf^, 

since aL4 =cdjAcdhA and cd/L4 includes j d 5 . Again replacing 4̂ 
by cjA, we obtain 

jcjcjcjA = ƒ c/4 + jdScdcjA 

= / G 4 + ƒ A4 + jdScdcAcdhA 

= JcA + jdScdcA , 

* C. Kuratowski, loc. cit. 
f J=cdS. Symbol used by Sanders, loc. cit. 
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again because cdhA includes cd2S, which in turn includes jdS. 
This establishes the formula 

jcjcjcjA = jcjA. 

6. Separated Part. By definition, 

sA — AckA, 

csA = cA + kA, 

scsA = (cA + kA)ckcsA. 

To evaluate the set kcsA we make use of the fact that for 
any set B, kB is equal to the limit as /3 increases of MB. By 
definition, 

hcsA = {cA + kA)(dcA + dkA) 

= Z ^ + dkA, 

since the product of s A and d M is null ; and 

h2csA = (hcA + dkA)(dhcA + dkA) 

= h2cA + ^ i , 

dkA being perfect, that is, d2kA =dkA. Continuing, we see that 

hPcsA = WcA + dkA, 

kcsA = kcA + dkA = c£4&S\ 
Hence, 

c&c^4 = ŝ 4 + sS, 

ses A = (c4 + kA)(sA + sS) 

= c4sS, 

kA being a subset of kS and not of s»S. 
Substituting csA for .4, we have 

scscsA = sAsS = AsS. 

Again substituting csA for ^4, we obtain 

scscscsA = C&4&S' = cAsS + &4 sS 

= c^4sS, 

establishing the formula 

scscscsA = scsA, 
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7. Kernel. By definition, 

kA = AcsA, 

ckA = cA + sA, 

kckA = kcA + sAdkcA. 

Substituting ckA for A, we have 

kckckA = &M + sckAdk2A 

— kA + sckAdkA. 

We observe that 

sckA — ckAckckA 

= (cA + sA)ckcA(csA + cdkcA) 

= scA + £/4a/&&4 

= sĉ 4 + AsS, 

since sAcdkcAkS = 0. Therefore, 

kckckA — kA + (SG4 + AsS)dkA 

= kA + scAdkA. 

Again substituting ckA for A, we have 

kckckckA = k M + s^4d&£&;l 

= kckA, 

since s^4 = 0 . 

8. Additional Operators. Since the transforms of operators sat­
isfying the Kuratowski formula also satisfy it, we immediately 
obtain the fact that the following operators satisfy the Kuratow­
ski formula: cdc, cjc=(l+hc), cfc=(i+ic)f ckc=(l+sc), and 
csc = (1+kc). 

Since e, i,j, 6, ƒ, k, and s are known to satisfy equation (2), it 
follows immediately that ic, (c+dc), (c+h), (c+i)9 (i+ic), 
(c+s), and (c+k) satisfy the Kuratowski formula. 

9. Examples. Equation (1) will not hold in general for <j> equal 
to either of the remaining two operators, b and h, as the follow­
ing examples show. 
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Let the space 5 be the closed linear interval (0, 1). Let the 
set A be the points (1/2, 3/4, 7/8, • • • ). Then, 

h A = A, 

bcbA = 1, 

bcbcbA = null, 

bcbcbcbA = null 

^ bcbA. 

For the second example, consider the same space S but in­
clude also the point 1 in the set A. Then, 

h A = 1, 

hchA = S - 1, 

hchchA = null, 

hchchchA = 5 

9^ hchA, 

Although equation (1) does not hold for either b or h, it is 
interesting to note in these examples that 

bcbcbcbcbA = bcbcbA , 

hchchchchA = hchchA . 

10. Border. Examining further the operator ô, we see that 

cbA = cA + iA, 

and 

bcbA = M + iA)dbA 

= bcAdbA, 

since dL4 is included in ƒ4 rather than in iA. 
Substituting cbA for 4 and making use of the fact that c2 = 1 

and b2 = b, we have 

bcbcbA = bccbAdbcbA 

= bAdbcbA 

^ bA. 

Thus we see that we have two monotonie decreasing se-
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quences of sets, {bc)^bA and (bc)2P+lbA, 0 = 1 , 2, 3, • • • . Chit­
tenden has pointed out that, since a set is determined by every 
product IL4|3, (|8 = 1, 2, 3, • • • ), where [Ap] represents a mono-
tonic decreasing sequence of sets, each of these sequences defines 
a set and we have implied that for all ordinals a greater than or 
equal to some finite or transfinite ordinal ceo, 

(bc)«+2bA = Q>c)"bA. 

11. Concentrated Part. Similarly, it can be shown that, with 
increasing /3, Qic)2^hA defines a set. We have 

hA = AcjA, 

chA = cA + jA , 

hchA = (cA + jA)(dcA + djA) 

= hcA + jAdcA + cAdjA. 

Substituting chA for A, we may write, 

(hc)2hA = AM + jckAdhA + hAdjchA. 

However, 

jVM = (c l̂ +/4)cd&4cd[;;4 

= cAcdcAcdjAcdhA + cAcdcAcdjAdhA 

+ jAcdcA, 

jA being included in cdjM. This simplifies to 

jchA = cAcd(cA + jA + hA) + jcAcdjcAcdjAdhA 

+ -4aL4cd&4 

= / c 4 + JM + i c 4 ^ 5 

= / + jcAidS, 
and we have 

(hc)2hA = h2A + (J +jcAidS)dhA + hA(dJ + djcAidS) 

= kA + sh2A + JcAidS + shAdJ 

= (L4 + jcAidS)dkA + sh2AidS + shAdJ', 

since AM = M M +sAM and M 4 = fe4. 
Again substituting chchA for A, we have 

(hc)AhA — (kchchA + j hchA idS)dkc hchA 

+ sh2chchAidS + shchchAdJ. 
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But, 

kchchA = khchchA = kA + jcAidS, 

dkchchA = J M + d(jcAidS) = dkA, 

jhchAidS = idS(hcA + jAdcA 

+ cAdjA)cdhcAcd(jAdcA)cd(cAdjA) 

= idS\jhcAcd(cAdjA)cd(jAdcA) 

+ j(cA djA ) cd he A cd (JA dcA ) 

+ i 0*̂ 4 d&4 ) c dAa4 cd(a4 d£4 ) ] 

= idS -j he A , 

sh2chchAidS = h(sh2AidS) = shUidS, 

shchchAdJ = shAdJ. 

Making these substitutions, we obtain 

(Ac)4M = (L4 + JcAidS + jhcAidS)dkA + sA^idS 

Continuing, we have 

+ shf>+1AidS + shAdJ. 

Since 

sa<4 = jcA + j'A&4 + yA2&4 • • • 

= Ytjh'cA, 

and s¥cA=¥scA^0, with increasing /3,* it is apparent that 
with increasing /?, 

(Ac)2^M -> (kA + scAidS)dkA + shAdJ 

= (kA + s ^ i d S + hAdJ, 

and this establishes the proof. 

* —> is the ordinary symbol for convergence; Ap^>A, with increasing /3, 
is equivalent t o l l ( ^ c ^ + ^ c ^ ) =0, (0=1, 2, 3, • • • ). 
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12. Summary. The results of §§2-7 can be summarized in the 
following theorem : 

THEOREM. The Kuratowski formula, 

(j>c(l>C(j)C(j)A = (j>c<t>A, 

is satisfied for<j> equal to any of the operators l,c,d, e, i,j,f, k, and s. 

Sections 10 and 11, together with this theorem, imply the fol­
lowing corollary : 

COROLLARY. The equation 

{<j>c)a^A = {^cY(t>A 

holds for every ordinal a equal to or greater than some finite or 
transfinite ordinal ao, and for 0 equal to any of the operators l,c,d, 
e, i, h,j, b,f, k, and s. 
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A CONDITION THAT A FIRST BOOLEAN 
FUNCTION VANISH W H E N E V E R A 

SECOND DOES NOT 

BY J. C. C. MCKINSEY* 

It is well known f that if two polynomials ƒ(xx, • • • , xn) and 
g{x\, • • • , xn) in the field of complex numbers are such that ƒ 
vanishes whenever g does not, then at least one of the two poly­
nomials /and g is identically zero. The corresponding law, how­
ever, does not, in general, hold for Boolean functions, as may 
be seen by considering the two functions x and x' in a two-
element Boolean algebra; the statement that either x = 0 or else 
x'= 0 in a two-element Boolean algebra is, indeed, the familiar 
law of excluded middle. I t is the purpose of the present note to 
determine the conditions on the coefficients of two Boolean func­
tions in order that the first vanish whenever the second does not. 

The condition found involves prime Boolean elements, which 
are defined as follows : 

* Blumenthal Research Fellow. 
t See, for example, Bocher, Introduction to Higher Algebra, p. 8. 


