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CYCLIC RELATIONS IN POINT SET THEORY*
BY E. C. STOPHER, JR.

1. Introduction. The formula
(1) dcpcpcpd = pepA ,

where ¢ denotes the operation of taking complements and ¢ is
an arbitrary operator, is of considerable interest in the study of
sets of points. Kuratowskif proved that the formula holds for
a postulated closure or extension function. Zaryckif established
the formula in case ¢4 is the “interior” of 4 and Sanders§ es-
tablished it for a general derived set operator satisfying the
postulates:

I. d(A + B) = dA + dB,
II. d’4A = dA.
In this paper we shall follow the established|| practice of post-
ulating a derived set operator d, subject to I and II, and, using

a notation introduced by Chittenden, define certain terms as
follows:

Identity: 14 = 4;
Complement: cA = S — A (S denotes the entire space);
Extension g ed = A +dA;

* Presented to the Society, April 10, 1937.

t C. Kuratowski, Sur opération A de U'analysis situs, Fundamenta Mathe-
maticae, vol. 3 (1922), pp. 182-199.

t M. Zarycki, Notions fondamentales de analysis situs, Fundamenta
Mathematicae, vol. 9 (1927), pp. 3-15.

§ S. T. Sanders, Jr., Derived sets and their complements, this Bulletin, vol. 42
(1936), pp. 577-584.

|| F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti del 4 Congresso
Internationale dei Matematici, Roma, 1910, vol. 2, p. 18; Chittenden, On gen-
eral topology and the relation of the properties of the class of all continuous func-
tions to the properties of space, Transactions of this Society, vol. 31 (1929),
pp. 290-321,

F. Hausdorff, Mengenlehre, pp. 109-129. Under the postulates given, the
derived set corresponds to Hausdorff’s set of 8 points, 4g. The extension corre-
sponds to his a points, 4,. Similarly, #4 corresponds to 4, j4 to 4;, b4 to A,
(border is a translation of the German word “rand”), k4 to A, and s4 to 4,.
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Interior: 1A = Acdcd;

Concentrated part: hA = AdA;

Isolated part: jA = Acd4;

Border: bA = Adcd;

Frontier: fA = AdcA + cAdA;

Kernel: k4 = ZB <A4,such that BSdB;

Separated part: sA = AckA.

In §§2-7 it will be shown that each of these operators except
b and & satisfies the Kuratowski formula. It might be pointed
out that these operators do not all have the same basic proper-
ties. In contrast to Postulates I and II we have, for example,

i(4 + B) = id + iB,
i(AB) = idiB,
24 = id,

f(4 + B) < f4 + /B,
4 < fA.

This list of operators is by no means a complete list of opera-
tors satisfying the Kuratowski formula, as can be readily seen
by considering the formula

) yid = ¢4,

We have the proposition that if an operator 8 satisfies formula
(1) ((2)), its transform* satisfies (1) ((2)) and its complement
satisfies (2) ((1)). We make use of this proposition in §8 to ob-
tain additional operators satisfying the Kuratowski formula.

Examples will be given in §9 to show that the b and % opera-
tors do not in general satisfy the Kuratowski formula. It will
be shown in §§10 and 11 that each of (bc)#b4 and (kc)?hA with
increasing 3 defines a set.

2. Identity, Complement. The identity operator can be used
in the Kuratowski formula since, on account of the relation
c*A =4, each side of the equation reduces to c4. It is readily
seen also that the complementary operator can be used in place
of ¢, each side of the equation again reducing to c4.

* An operator ¢ is said to be the transform of an operator v, if ¢4 =cycd;
it is the complement of the operator ¢, if ¢4 =cy 4.
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3. Extension, Interior. The general “defined” extension func-
tion satisfies the Kuratowski formula since this function satisfies
Kuratowski's postulates I, II, and IV, which Kuratowski*
showed were sufficient. We immediately have

iciciciAd = icid,
since the interior and extension operators are transforms of each
other.

4. Frontier. Since fcA=fA, fA=0bfA, and b4 =bA, both
fefefefA and fefA reduce to bf4, establishing the formula
fefefefd = fefd.
5. Isolated Part. By definition,
jA = AcdA,
¢jA = cA + kA,
jejA = (cA + hA)cdcAcdhA
cAcdcAcdhA(cdjA + djA) + hAcdhAcdcA
cAcdcAcdhAcdjA + cAcdcAcdhAdjA
~+ AdAcdhAcdcA
= cAdcd(cA + hA + jA) + cAcdcAcdhAdjA
+ AdjAcdhAcdcA
= cAcdS + djAcdhAcdcA(cA + A)
= JcA + jdScdcA . 1

It

Replacing 4 by ¢j4, we have
jejejA = JjA + jdScdjA
= JA + jdScdA,
since cd4 =cdjAcdhA and cdhA includes jdS. Again replacing 4
by ¢j4, we obtain
jejejejd = JcjA + jdScdcjA
= JcAd 4+ JhA + jdScdcAcdhA
= JcA + jdScdcA,

* C. Kuratowski, loc. cit.
1 J=¢dS. Symbol used by Sanders, loc. cit.
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again because ¢dhA includes ¢d%S, which in turn includes jd.S.
This establishes the formula
jejejejd = jejA.
6. Separated Part. By definition,

sA = AckA,
csA = cA + kA,
scsA = (cA + kA)ckesA.

To evaluate the set kcsA we make use of the fact that for
any set B, kB is equal to the limit as 8 increases of 4#fB. By
definition,

hosA = (cA + kA)(dcA + dkA)
= hed + dA,

since the product of s4 and dkA4 is null; and

h2csA = (hcA + dkA)(dhcA + dkA)
= h%A + dk4,

dkA being perfect, that is, d?k4 =dkA. Continuing, we see that

WcsA = hPcA + dkA,

kesA = kcA + dkA = csAkS.
Hence,

ckesd = sA + sS,

scsA = (cA + kA)(sA + sS)

= ¢4sS,

kA being a subset of kS and not of sS.
Substituting c¢s4 for 4, we have

scsesd = sAsS = AsS.
Again substituting ¢sA4 for 4, we obtain

scscscsA = ¢sAsS = c¢AsS + kAsS
= ¢A4sS,
establishing the formula

scscscsA = scsA.
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7. Kernel. By definition,
kA = Acs4,
ckA = cA + 54,
kckA = kcA + sAdkcA.
Substituting ckA4 for A, we have

kckckA = R4 + sckAdk*A
= k4 + sckAdkA.

We observe that

sckAd = ckAckckA

(cA 4 sA)ckcA(csA + cdkcA)
scA + sAcdkcA

= sc4d + AsS,

since sAcdkcAkS =0. Therefore,

kckckA = kA + (scA + AsS)dkA
= kA + scAdkA.

Again substituting ck4 for 4, we have

kckckckA = kckA + skAdkckA
= kckd,

since sk4 =0.

[October,

8. Additional Operators. Since the transforms of operators sat-
isfying the Kuratowski formula also satisfy it, we immediately
obtain the fact that the following operators satisfy the Kuratow-
ski formula: cde, ¢je=(1+he), ¢fc= (i+1ic), ckc=(1+sc), and

csc=(1+kc).

Since e, 1, j, b, f, k, and s are known to satisfy equation (2), it
follows immediately that ic, (c+dc), (c+h), (c+1), (G+1ic),

(c+s), and (c+k) satisfy the Kuratowski formula.

9. Examples. Equation (1) will not hold in general for ¢ equal
to either of the remaining two operators, b and %, as the follow-

ing examples show.
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Let the space .S be the closed linear interval (0, 1). Let the
set 4 be the points (1/2, 3/4, 7/8, - - - ). Then,

b4 = A4,
bebd =1,
bcbcbA = null,
bcbcbebA = null
# bcbA .

For the second example, consider the same space S but in-
clude also the point 1 in the set 4. Then,

hrAd =1,
hehd =S — 1,
hchchA = null,
hchchchd = S
# hchA .

Although equation (1) does not hold for either b or &, it is
interesting to note in these examples that

bcbcbcbcbA = bcbcbA
hchchchchd = hchehA .

]

10. Border. Examining further the operator b, we see that
cbA = cA + 14,
and
bebA = (cA + id)dbA
= bcAdbA

since db4 is included in fA4 rather than in 74.
Substituting ¢b4 for 4 and making use of the fact that ¢2=1
and b2=b, we have

bcbcbA = becbAdbcbA
= bAdbcbA
= b4.

Thus we see that we have two monotonic decreasing se-
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quences of sets, (bc)?b4 and (bc)?*+1b4, B=1, 2,3, - - - . Chit-
tenden has pointed out that, since a set is determined by every
product T4, (3=1,2,3, - - - ), where [A4] represents a mono-
tonic decreasing sequence of sets, each of these sequences defines
a set and we have implied that for all ordinals « greater than or
equal to some finite or transfinite ordinal «y,

(bc)*t2bA = (bc)*bA.
11. Concentrated Part. Similarly, it can be shown that, with
increasing 3, (hc)*hA defines a set. We have
hA = AcjA,
chd = c4 + j4,
hehd = (cA + jA)(deA + djd)
= heA + jAdcA + cAdjA.
Substituting ¢k4 for 4, we may write,
(he)?hA = h?A + jchAdhA + hAdjchA.
However,
jehA

I

(¢4 + jA)cdcAcdjA
cAcdcAcdjAcdhA + cAcdcAcdjAdhA
+ jAcdc4
jA being included in ¢dj4. This simplifies to
jehA = cAcd(cA + jA + hA) + jeAcdjeAcdjAdhA
+ AcdAcdcA
= Jcd + JA + jcAidS
= J + jcAidS,

and we have
(he)2hA

A + (J + jeAidS)dhA + hA(dT + d jeAidS)
= kA + sh?4 + jcAidS + shAdTJ
(kA + jecAidS)dkA + sh?4idS + shAdJ,

since h?4 =kh?A +sh?4 and khA =kA.
Again substituting ckchA for A, we have

(he)*hA = (kchchA + jhchAidS)dkchchA
+ sh2chchAidS + shchchAdJT .
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But,
kchchA = khchchd = kA + jcAidS,
dkchchAd = dkA + d(jcAidS) = dkA,
JhchAidS = idS(hcA + jAdcA

+ cAdjA)cdhcAcd(jAdcA)cd(cAdjA)
1dS [jhcAcd(cAdjA)cd(jAdcA)
+ j(cAdjA)cdhcAcd(jAdcA)
+ j(jAdcA)cdhcAcd(cAdjA) ]
= 1dS-jhcA,
shichchAidS = h(sh?41dS) = sh34idS,
shchchAdJ = shAdJ .

Making these substitutions, we obtain
(he)*hA = (kA + jeAidS + jheAidS)dkA + sh34idS
+ shAdJ .
Continuing, we have

B—1
(he)®hA = [kA + > jhcA idS] dkA

y=0

+ shPt144dS + shAdJ .

Since

scA = jcA + jhed + jh*A - - -

> jhreA,

=0

and shfcA =hfscA—0, with increasing 3,* it is apparent that
with increasing 3,

(he)#hAd — (kA + scAidS)dkA + shAdT
= (kA + scA)idS + hAdJ,

and this establishes the proof.

* — is the ordinary symbol for convergence; 4g—4, with increasing B,
is equivalent to IT (Acdg+A4gc4)=0, (8=1,2,3,-- ).
B 8
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12. Summary. The results of §§2-7 can be summarized in the
following theorem:

THEOREM. The Kuratowski formula,
dcpepcpd = pcopd,
is satisfied for ¢ equal to any of the operators 1,c,d, e, 1,7, f, k,and s.

Sections 10 and 11, together with this theorem, imply the fol-
lowing corollary:

CoOROLLARY. The equation
(p0)*t2pA = (¢c)¢4

holds for every ordinal o equal to or greater than some finite or
transfinite ordinal oo, and for ¢ equal to any of the operators 1, ¢, d,
e, 1, hj,b,f k ands.

UNIVERSITY OF Iowa

A CONDITION THAT A FIRST BOOLEAN
FUNCTION VANISH WHENEVER A
SECOND DOES NOT

BY J. C. C. MCKINSEY*

It is well knownt that if two polynomials f(xi, - - -, x,) and
g(x1, » -+, x,) in the field of complex numbers are such that f
vanishes whenever g does not, then at least one of the two poly-
nomials f and g is identically zero. The corresponding law, how-
ever, does not, in general, hold for Boolean functions, as may
be seen by considering the two functions ¥ and x’ in a two-
element Boolean algebra; the statement that either x =0 or else
x’=0 in a two-element Boolean algebra is, indeed, the familiar
law of excluded middle. It is the purpose of the present note to
determine the conditions on the coefficients of two Boolean func-
tions in order that the first vanish whenever the second does not.

The condition found involves prime Boolean elements, which
are defined as follows:

* Blumenthal Research Fellow.
t See, for example, Bocher, Introduction to Higher Algebra, p. 8.



