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AN INDECOMPOSABLE L I M I T SUM 

BY N. E. RUTT 

It is the object of this paper to investigate a certain simple 
monotone sequence of continua. The theorem of the paper states 
conditions under which the limit sum of the sequence is inde­
composable. The precise formulation and proof of the theorem 
will be undertaken after the following lemma is established. 

LEMMA. Let K be a plane bounded indecomposable continuum 
and L a plane bounded continuum such that K-L^O, and that 
c(L)* includes a particular component X containing the component 
b of c(L+K) with the following properties: 

(a) the set L contains two distinct points, a and c, connected 
through b by the arc B which divides b into bi and be, and X into X; 
and Xe; 

(b) both X» and Xe contain points of K. 
Then each component of c(K+L) has as its boundary a proper 
subset of K+L. 

The assumption that c(K+L) has a component y with bound­
ary T such that T 3 (K+L) will be shown contradictory. Let the 
boundaries of S*, ôe, X;, Xe be respectively At-, Ae, A»-, and Ae. Sup­
pose that b is unbounded and also be and Xe, so that 8i and X; 
will necessarily be bounded. Evidently X; 3 8i and Xe 3 be. Con­
sider first the case in which L is irreducible between a and c. 

Both Ai and Ae contain L. For Ai^L+B and AecL+B; so, 
since B is an arc with L- (.B)f = 0, AiL and AeL are continua 
containing a+c. If either of these is not identical with L, then L 
is reducible between a and c. The domains b and y are, more­
over, identical, for both X» and Xe contain points of K, therefore 
points of T, and therefore points of 7. There is thus an arc X 
in y such that X - X ^ O and X X e ^ 0 , and since X L = 0, then 
(B)-X5*0. This implies X - ô ^ O , accordingly 7 - 6 ^ 0 ; and 
as both 7 and b are components of c(K+L), then 7 = 5, and 
\+LDTDK. 

Let Ki be the sum of K\i and of all the components of L-K 

* If X is a point set then c(X) is the complement of X. 
f If X is an arc then (X) is X with ends omitted. 
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containing limit points of 2C-X»; and let Ke be a similar set con­
structed from Xe. Each of these is a closed subset of K; and 
Ki+K.DK'Qii+\ê)oK-\, so that Kj+Ke^XTk. If Kj+Ke 

$ KL, then K • L includes a component M such that i£ • X • M = 0 
and M may be enclosed in a simple closed curve C, not inter­
secting KL, and excluding i£X. But C- (K-X+K-L) = 0 im­
plies C i £ = 0, because X + I D Z , SO C separates K without 
intersecting it. Accordingly Ki+Ke = K-X+K• L = K. But now 
if both Ki and Ke were continua, as they are proper subsets of K, 
the set K = Ki+Ke would be decomposable. Thus either Ki or 
Ke is disconnected. 

Let Ki be disconnected, that is, let Ki = Ka+Kc where 
Ka = Ka, Kc

 = rKc, and KaKc = 0. As Xi-K is contained by A», 
the components of KXi are an orderable collection and ele­
ments of this collection accessible from di must belong to 
both Ka and Kc. Thus there is a pair of arcs Ba and Bc where 
àiD {(Ba) + (BC)}, BaKaXi^O, BcKcXi9*0, Ba'(B)9*0, 
Bc-(B)9*0, and BaBc = 0. Now Ba+B+Bc contains an arc D, 
such that DDBa+Bc, DB is a subarc of (5), (D) c S, and 
S — (D) is a pair of domains du and 5&. Let the notation be so 
chosen that db c St- and 8U 3 ôe, the relationships being clear from 
the construction; and let the boundaries of 8U and ôb be Au 

and A6. Note that 56- (a + c) = 0 . 
Now Aft- (2£+L) * K. For A p D and consequently A 6 i £ a ^ 0 

and Aft-Z^O. But A&-(i£+L) is a continuum because 
A&-c(i£+L) = (£>). As KaKc = 0, Â ^ a Â ^ c = 0; that is 
Ab'(K+L)<tAb-(Ka+Kc). Therefore Ab-L-c(Ka+Kc)=Lk^0. 
Moreover L& includes a component Lb such that Lb'Ka9^0 and 
LbKc^O, for otherwise it must follow again that Ab—(D) is 
disconnected. Now Ke $ Lb, as otherwise there must be a com­
ponent of KL containing Lb and thus contained in both Ka 

and Kc. Thus i£;+i£e £ L& and Z, • c(K) D h, a point distinct from 
a and from c, and in A&. 

Let S be a circle with center h and radius such that ce (S)* 
is a set with no points in K+D+B, and such that in e(S)- de 

there is a ray R with end on (B). As L is irreducible between a 
and c, L-ci(S) consists of sets La' and L" mutually separated 

* If 5 is a simple closed curve, its interior is i(S) and its exterior is e(S). 
Accordingly ci(S)=S+e(S) and ce(S) = S+i(S). 
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between a and c. Let La and Lc be the components of these con­
taining a and c. Evidently 5 • La 9

e 0 and 5 • Lc ?* 0. Let F be an arc 
such that F-SteO, (F)ce(S), (F) c S&, and F(DB)?*0. Let E 
be an arc such that E S ^ O , (E)ce (S) , ( E ) + E - S c X e , and 
EB = FB. Let G be an arc such that (G)ci(S) and G S 
= ( E + J F ) -5 . The set E + E + ö is a simple closed curve / , in­
tersecting L only in i(S). 

The set L a+ce(S) + E+.B bounds a bounded domain <£a con­
taining points of K-c(L)'\i\ and Lc+ce(S) + F+B bounds a 
similar domain <£c. For L a+ce(5) is obviously a continuum and 
2? + E contains a cut Ea of its complement. Of the two compo­
nents of c(Fa+La+ce(S)) which are bounded in part by (E«) 
let <t>a be the bounded one. The boundary of <j>a contains either 
BBa or BBC (suppose the former), but not of course both. 
Thus by elementary reasoning from the constructions used, it 
appears that <t>a'^Ba'c(B) and thus contains a component of 
Ka^ki- In a similar way <f>c may be proved to contain a compo­
nent of Kc\i. Moreover 0 a-0 c = O and if i(J) D0a then e(J) D<f>c 

and vice versa. To be explicit, assume that i(J) 3 0a . 
That the domain Xe contains an uncountably infinite number 

of components of Xe • K each of which has a disconnected set of 
limit points in H will now be shown. Since i(J)o<j>a and 
e ( J ) 3 0c, both i(J) and e{J) contain points of K-c(H) and 
thus contain points of every composant of K. Let [Qa] be a col­
lection of subcontinua of K> one and only one in each composant 
of K, and each one having both a point in 0 a and a point in 0C. 
The elements of [Qa] are uncountable and mutually exclusive. 
Any one, Qg, of [Qa] has a point in <&a and one in <£c, where 
<ï>a and $ c are the boundaries respectively of <j>a and 0C; so 
Q0-3>a = Q0'(La+S+Fa) = Q{rLa^Oy and also QgLc^0. It ap­
pears indeed that Qg has a point in each of the mutually sepa­
rated closed sets L-e(J)-ci(S) and L • i(J) • ci(S), and as these 
two sets contain LK they contain LQg. In consequence 
Qg-c(L) has a component 6^ with a limit point in L-i(J) and 
a limit point in L-e{J). As L-i(J) and L-e(J) are mutually 
separated, the limit set of Gff is disconnected since it includes 
no point of / ; and also Gg-J = Gg• (E+F+G) =Gg-E^O, so 
GvXej^o and therefore \eDGg. Regard now the components 
[Ka] of \e'K which contain the members of [(?«]. Each of these 
has limit points in both i{J) and e (J) and none in / , and so 
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has a disconnected limit set in L. No two of these are identical, 
for no one, such as K0, of them has K0 = K as it contains none 
of the points of K in 0 a + 0 c , and if Kg were to contain two of 
[Ga] then K0 would be a proper subcontinuum of K containing 
points of two different composants of K. Thus the collection 
[Ka] is one of the sort required. 

Each set Kg+L is therefore a subcontinuum of K+L sepa­
rating the plane, a bounded component of its complement be­
ing 8g. No pair of elements, 8P and 8q, of [8a] can have a point 
in common unless one contains the other, for KpKq = 0. More­
over if 8P D 8q then 8P D Kq, and so 8P D 7, a contradiction as 7 3 S 
was unbounded. Thus [8a] is an uncountable collection of mu­
tually exclusive domains in the plane, another contradiction es­
tablishing at last the lemma for this case. 

None of the undiscussed suppositions made above requires 
any more justification than a suitable inversion of the plane ex­
cept the assumption that L is irreducible between a and c. But 
if L is not irreducible between a and c, then it contains a sub­
continuum W which is irreducible between a and c. By examin­
ing K and W it may be seen that the hypotheses of the lemma 
are fulfilled, so that the set c(K+W) has no component with 
boundary K+W. Neither then does the less inclusive set 
c(K+H). 

THEOREM. If [Di] is a simple infinite sequence of plane point 
sets such that y for each positive integer i, Diis indecomposable and 
DiCDi+i, and such that the set ^?Di is a plane bounded con­
tinuum r which is the frontier ofy, a component of its complement, 
then T is also indecomposable. 

The theorem is obvious if no more than a finite number of 
[Di] are distinct, as then T is identical with one of [Di], As­
sume accordingly that all of [Di] are different, other possible 
cases being not significant. Let ^2iDi = Dm and F — Dm = Dn. 
Every point of Dn is a limit point of Dm, for T=^iDi = Dm 

so Dm ^ Dn. Every subcontinuum of Dn is a continuum of con­
densation of T, because when Dn contains the continuum K, 
then 'D^'DDU'DK implies r — K3T — DnDllin3K. Moreover 
let d be a point of Dm. Now D3+i D DJ while D3+i — D^O, so D3-
belongs to a single composant of D3+i. Thus D3+i— D3 s D 3 \ tha t 
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is T — Dj^Dj+i—Dj^Dj, or Dj is a closed set nowhere dense 
in the closed set V. But this being true for any value of j 
(j = l, 2, 3, • • • ) then ^™Dj = Dm must be a set of the first 
category in the closed set T. Thus Dn is a set of the second 
category in V everywhere dense in the set V. That is, Dn => Dm 

so Dn 3 d. Consequently every subcontinuum of Dm is a con­
tinuum of condensation of T, for when Dm^ K, then Dn = T 
implies that T — KD T —Dm^ Dn^> K. Henceforth consider y 
unbounded. 

The argument will be completed by showing that every 
proper subcontinuum of T is a continuum of condensation of T. 
Let K be such a continuum and, as the cases Dm D K and DnD K 
have already been dealt with, suppose that KDm^O and 
K-Dn9*0. Clearly K j> Dm for K D Dm would imply K = T. There 
must be some element of [Di] contained in part but not entirely 
by K. Let Dk be such an element. Thus, if i>k, the element Di 
can not be a subset of K, for K D Di implies KD D{D Dk. 

Suppose that the set Dk'c(K) — Tk is not connected. As 
Dk+KcT, c(Dk+K) D c(T) oy. Thus there is a connected 
domain 7^ complementary to Dk+K such that 7 P 7 . As 
ykoyDT then yk^Dk+K. But yk = yk+Bk, where Bk is the 
boundary of 7&, and so yk^>Dk+K implies J3&3D k+K. Let G 
be a component of Tk containing the end of a ray Rg contained 
except for its end in yk. As every component of Tk consists of 
limit points of yk, and Tk is not connected, there is another com­
ponent H of r k containing the end of another ray Rh, (R0 Rh = 0), 
which is except for its end contained in 7^. 

Now there exists a simple closed curve C such that i(C) ^ G, 
CTk = 0, e(C) DH+RH, and CRg is a single point. Upon trac­
ing C in opposite directions from CRg, first points of Dk+K 
are clearly encountered. Let the subarc of C thus identified be B. 
But (B) • (Dk+K) = 0 by selection, a n d £ • (Dk+K) c B • ( I \ + i Q 
c CTk+BK cBK cK, so B is a cut of the unbounded com­
plementary domain yd of i£. Thus 7^— (B) consists of two 
domains, a bounded one 7& and an unbounded one yu> As 
Rh-(B+K) cRh.(C+K) cRhC+RhK = 0, then yuoRh, and 
thus 7W-Z}fc72£0, for indeed yuDH. Upon considering 7& it may 
be seen with reasonable ease that the single point BRg sepa­
rates Rg into two parts, the unbounded one of which is a subset 
of yu whereas the bounded one is a subset of 7&. As the end of 
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the bounded part is in G, then yb also contains points of Tk as 
it contains G. These facts make it clear also that the ends of B 
are distinct, for if identical they would coincide with a cut point 
of the continuum Dk} although Dk is indecomposable. 

A contradiction of the lemma now appears, for this is the 
situation: the plane continuum Dk is indecomposable and 
bounded and K is a bounded continuum such that K-Dk^O, 
the set K contains two distinct points connected in c(Dk-{-K) 
by an arc B haviilg only its ends in common with Dk+K and 
separating the component of c(K) which contains it into two 
domains yb and yu, both yb and yu contain points of Dk, and 
there is a component of c(Dk+K) whose boundary is identical 
with Dk+K. As this is ridiculous, the set r* is connected as was 
to be proved. 

But if K is not a continuum of condensation of T, there exists, 
a point s of K and a circle 5 such that i(S) 3 s and e(S) D T — K. 
But Dm — T so i(S)-Dm^0; that is, there exists a subscript q 
such that i(S)'Dq=éO. For any subscr ip t i># , then i(S)'D3^0 
as i(S)-Dj D i(S)-Dq9

£0. Let r be a natural number greater than 
k and greater than q. Then Dr-c{K) = Tr is non-vacuous and con­
nected as has been seen already. But Tr-i(S) cT — K'i(S) — 0, 
so r r fails to contain any point of the non-vacuous set i(S) Dr. 
Therefore Tr is a proper subcontinuum of Dr, and must accord­
ingly belong to a single composant Dr

a of Dr. As Dr-c(K)j^0 
by supposition, there are points of Dr not in K. But let Dr

h be a 
second composant of Dr. As Dr

a D I \ , then Dr
b c K. Accordingly 

Dr
bcK, and as Dr

b = Dr, finally J9 rc J£, a contradiction. 
As the contradiction is now general, the theorem is proved. 
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