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ON A THEOREM OF HIGHER RECIPROCITY*
BY ALBERT WHITEMAN |

1. Introduction. Let D denote the totality of polynomials in
an indeterminate x, with coefficients in a fixed Galois field
GF(p~) of order p~. Let P be a primary irreducible polynomial
in D; then, if 4 is any polynomial in D not divisible by P, we
define {A| P} as that element in GF(p~) for which

{‘i} = 4G™-DIG™D  (mod P),
P

where v is the degree of P.
We have then the following theorem of reciprocity due to H.
Kuhne} and rediscovered by Schmidt§ and Carlitz. ||

If P and Q are primary irreducible polynomials in D of degree
v and p respectively, then

P
&) - o5}
Q P
If M=P - - - Py and (4, M) =1 we use the definition,
{A {A o {A }"k
M} B E} S

The purpose of this note is to give a simple new proof of the
following theorem:
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If M and N are primary relatively prime polynomials in D of
degree m and n respectively, then

oo (i)

This generalized form of Kuhne'’s theorem is, of course, not
new. The novelty of our method consists in proving the case
M, N directly (rather than P, Q) by making use of the general-
ized analog of Gauss’s lemma* proved in §2.

2. Generalization of the Analog of Gauss's Lemma. We shall
employ the following notation. If

F=qgaw+ax 1+ - +a, ay # 0,
is a polynomial in D, then
sgn F = ao, deg F = »;
for sgn F=1, F is said to be primary. Let R(4/B) denote the

remainder in the division of 4 by B. Then the generalization
in question is furnished by the following lemma.

LEMMA. Let A and M be in D, M primary and relatively prime

to A; then
A HA
— = sgn ‘R(——),
{M} degHII<m g M

the product extending over all primary H of degree less than the
degree of M.

We shall now give a proof of this lemma along lines suggested
by Schering’st proof in the numerical case.

3. Proof of the Lemma. Following Dedekind,{ we define
¢ (M) to be the number of polynomials in a reduced residue sys-
tem, mod M ; the number of primary polynomials prime to M

* L. Carlitz, loc. cit., p. 46.

t E. Schering, Zur Theorie der quadratischen Reste, Acta Mathematica, vol.
1 (1882), pp. 153-170; see also P. Bachmann, Die Elemente der Zahlentheorie,
1892, pp. 144-148.

1 R. Dedekind, Abriss einer Theorie der hoheren Congruenzen in Bezug auf
einer reellen Primgahl-Modulus, Journal fiir die reine und angewandte Mathe-
matik, vol. 54 (1857), pp. 1-26.
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and of degree less than m is then evidently ¢(M)/(p™—1).
Hence, just as in the numerical case, it is very easy to show
that the number of primary polynomials H of degree less than m
such that (H, M)=D is ¢(M/D)/(p™—1).

Put H=H,D, M = M,D. Then the congruence

HA
HA = H' sgn‘l{(—;{—) (mod M), deg H <m, sgn H =1,
becomes
HA
(1) H1A = Hll sgn R<_]l7> (mod Ml).

Evidently the polynomials H; are the polynomials H{ in
some order. Therefore, if we multiply all congruences of the
type (1) together and divide each member of the resulting con-
gruence by the product of the H; (which is prime to M), we
have

HA
(2) Asa16™D = ] sgn {R(—ﬂ) (mod M3).

(H,M)=D

For M,=P, a primary irreducible polynomial of degree v,
the last congruence becomes

(3) AG™-D(™1) = {i} (mod P).
P
Writing this congruence in the form
A@™=-1D(p™1) = {A_} + FP,
P

and raising both members to the pr*-Drth power, we can
readily show that

Ap”(k—l)”(p""’—l)l(p"—l) — {‘_4_ + F/Ppar(lc~1)u-
P

But it is well known that
¢(Plc) —_ Pr(k—l)v(ﬁ‘n — 1).

Hence
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(4) As@PR(p™-1) = {%} (mod P¥).

Finally, for My=Pd - .. Pkb”, Oébiédi, k>1, deg Pi‘—“lli,
we have
(M) _ 1 k

_ Bi—D)mvs( vy — 1),

Hence, since

A?™ =1 (mod Py),
it follows that

5) AeMDI™D = 1 (mod M,),

where, as already stated, M, is the product of at least two dis-
tinct irreducible polynomials.

Combining the results of (2), - - -, (5) we now see that
HA
(6) IT sgn ‘R<—~>
(H,M)=D M

has the value 1 unless M;=M/D is irreducible or the power of
an irreducible polynomial. On the other hand, for M;=P}?
(b=1, - -, as), (6) has the value {4 ] P;}. Consequently

HA

11 1 senr("r) = 11 s ()

D|M (H,M)=D M degH<m

b

from which the Lemma follows at once.

4. Proof of the Theorem.Let A, N denote primary polynomials
of degrees a, n respectively; let (4, N)=1, a=#. Consider the
congruence

4 =R(4/N) (mod N), degR(4/N) < n.

Evidently there exists a primary H (say H,) of degree ¢ —# such
that

4 = R(4/N) + H,N.

But this equation may be written in the form
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@) H\N = — R(4/N) (mod 4).

Let E be any polynomial (not necessarily primary) of degree
less than ¢ —#. Then we may write

(8) (Ho+ E)N = EN — R(4/N) (mod 4),
where

© 0 < deg(EN — R(4/N)) < a,

sgn (EN — R(4/N)) = sgn EN = sgn E.
Furthermore, we have the obvious identity
(10) Il avn=H,N ][] (H.+ E)N, E#O0.

degH=a—n degE<a—n
Therefore, by equations (7), - - -, (10),
HN
11 ()
degH=a—n A
H\N H E)N
(11) = sgn R( - ) IT sen R((—o-i;l—)
4 degE<a—n A

= — sgn R(}—t—) H sgn E.

deg E<a—n

Now, by the generalization of Wilson’s theorem for a Galois
field,

I[o= -1, b in GF(p"),
b

from which it follows at once that
IT sgn E = (= )o,

deg E<a—n
Hence (11) becomes
HN A
(12) II sgn R(~—) = (— 1)e—n+lsgn ‘R(—)
degH=a—n A N
Since

HN

A
R A ) R(HN)’ 8 °8
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(12) may also be written in the form

A A
13 sgn — ) = (— 1)o —).
19 I sm®(55) = (- 0 s 1(5)

Let us now assume, as we may without any loss of generality,
that m=#. In (12) replace 4 by KM, where K is any primary
polynomial of degree k(k<#). Then we have

11 sonR(mar) = (= D= s & (5
sgn — ) = (- m—n sgn el B
deg H=k+m—n g KM g N

Now let K run through all the p™* primary polynomials of de-
gree k; we get

HN KM
(14) sn R (15 ) = (= 0 11 sen k().
degH:-[Z-m—n & KM degK—F N
degK=k
In a similar manner we may obtain from (13),
HN HN
(15) s n‘R(——-) = (— 1)* s n‘R(——-—)
degHaIch-l-m——n & KM degHHer—n 8 M
deg K=k
Comparing (14) and (15), we obtain
KM HN
II sen R(——-) = (=nmt J[ sgn ‘R(—)
deg K=ak N deg H=k+m—n M
Therefore
KM ON
IT sen ‘R(——) = (= 1)mwe"=n ]  sgn ‘R(——-—)
degK<n N m—nSdeg Hm M
When we note that
HN
II sgn ‘R<~——> =1,
deg H< m—n M
the theorem follows at once.
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