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ON A THEOREM OF H I G H E R RECIPROCITY* 

BY ALBERT WHITEMANf 

1. Introduction, Let 35 denote the totality of polynomials in 
an indeterminate x, with coefficients in a fixed Galois field 
GF(p*) of order pr. Let P be a primary irreducible polynomial 
in 35; then, if A is any polynomial in 3) not divisible by P , we 
define {^4|P} as that element in GF(pT) for which 

&}- 4(P"-I>/<P*-I> (modP), 

where v is the degree of P . 
We have then the following theorem of reciprocity due to H. 

KuhneJ and rediscovered by Schmidt § and Carlitz.|| 

If P and Q are primary irreducible polynomials in 35 of degree 
v and p respectively y then 

£}-<-«-£}• 
If M=Pin • • • Pk

ak and (-4, M) = 1 we use the definition, 

fci-Gr-GT 
The purpose of this note is to give a simple new proof of the 

following theorem : 

* Presented to the Society, February 20, 1937. 
t Harrison Scholar in Mathematics, University of Pennsylvania. 
% H. Kuhne, Eine Wechselbeziehung zwischen Funktionen mehrerer Unbe-

stimmter die zu Reziprozitdtsgesetzen filhrt, Journal für die reine und ange-
wandte Mathematik, vol. 124 (1901-02), pp. 121-133. 

§ F . K. Schmidt, Zur Zahlenthearie in Körpern von der Charakteristik p, 
Sitzungsberichte der Physikalish-medizinischen Societât zu Erlangen, vol. 
58-59 (1928), pp. 159-172. 

|| L. Carlitz, The arithmetic of polynomials in a Galois field, American Jour­
nal of Mathematics, vol. 54 (1932), pp. 39-50. 
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If M and N are primary relatively prime polynomials in 35 of 
degree m and n respectively, then 

(M) (N ) 

This generalized form of Kuhne's theorem is, of course, not 
new. The novelty of our method consists in proving the case 
M, N directly (rather than P , Q) by making use of the general­
ized analog of Gauss's lemma* proved in §2. 

2. Generalization of the Analog of Gauss's Lemma. We shall 
employ the following notation. If 

F = aoxv + a\xv~x + • • • + # „ , a0 ^ 0, 

is a polynomial in 3), then 

sgn F = a0, deg F = v ; 

for sgn F = l , P is said to be primary. Let %(A/B) denote the 
remainder in the division of A by B. Then the generalization 
in question is furnished by the following lemma. 

LEMMA. Let A and M be in 35, M primary and relatively prime 
to A ; then 

{y\ = II sgn^ljY 

the product extending over all primary H of degree less than the 
degree of M. 

We shall now give a proof of this lemma along lines suggested 
by Schering'sf proof in the numerical case. 

3. Proof of the Lemma. Following Dedekind,J we define 
<j>{M) to be the number of polynomials in a reduced residue sys­
tem, mod M; the number of primary polynomials prime to M 

* L. Carlitz, loc. cit., p. 46. 
t E. Schering, Zur Theorie der quadratischen Reste, Acta Mathematica, vol. 

1 (1882), pp. 153-170; see also P. Bachmann, Die Elemente der Zahlentheorie, 
1892, pp. 144-148. 

t R. Dedekind, Abriss einer Theorie der höheren Congruenzen in Bezug auf 
einer reellen Primzahl-Modulus, Journal fiir die reine und angewandte Mathe-
matik, vol. 54 (1857), pp. 1-26. 
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and of degree less than m is then evidently <j>(M)/(pT—l). 
Hence, just as in the numerical case, it is very easy to show 
that the number of primary polynomials H of degree less than m 
such that (H, M)=D is 4>(M/D)/(p*-l). 

Put H = HiD, M = MiD. Then the congruence 

/HA\ 
HA ss H' sgn2U J (mod M), deg W < tn, sgn H' = 1, 

becomes 

/HA\ 
(1) HiA = H{ sgn <R( J (mod Mx). 

Evidently the polynomials Hi are the polynomials H{ in 
some order. Therefore, if we multiply all congruences of the 
type (1) together and divide each member of the resulting con­
gruence by the product of the Hi (which is prime to Mi), we 
have 

(2) A4>WX)KV*-D = J J s g n ^ ( ) (mod ilfi). 

For Mi = P, a primary irreducible polynomial of degree v, 
the last congruence becomes 

(3) ^ ( P ^ - D / C P ' - D = | _ | (modP). 

Writing this congruence in the form 

4 ( P " - I ) / ( P T - I ) = J — i + F P , 

and raising both members to the pr(k~l)vt\i power, we can 
readily show that 

^p»(*-l)i'(pTi'_i)/(pr-.1) _ i I _|_^/ppir(*-l)v^ 

But it is well known that 

0(P*) = p*(k-l)v(prv _ ^ 

Hence 
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(4) 4*<P*)/<P*-I> = | _ l ( m o d P * ) . 

Finally, for M^Pp • • • Pk
bk, 0^bi^ait k>l, deg Pi = vu 

we have 

4>(Mi) 1 * 

P*-I p'-iti 
Hence, since 

A*rvi = 1 (mod Pt-), 
it follows that 

(5) 4*<"i>/<**-i> = l (mod ilfi), 

where, as already stated, ikfi is the product of at least two dis­
tinct irreducible polynomials. 

Combining the results of (2), • • • , (5) we now see that 

(6) n ^^(~) 

has the value 1 unless Mi = M/D is irreducible or the power of 
an irreducible polynomial. On the other hand, for Mi = P / 
(6 = 1, • • • , a»-), (6) has the value {^4|P;}. Consequently 

n n sgn<R(̂ )= n *S*K(^) 
D\M {H,M)=D \M / degH<m \M/ 

from which the Lemma follows at once. 

4. Proof of the Theorem. Let A, N denote primary polynomials 
of degrees a, n respectively; let (A, N) = l, a^n. Consider the 
congruence 

A s <BSA/N) (mod N), deg %.{A/N) < n. 

Evidently there exists a primary iJ(say H0) of degree a — n such 
that 

A = %.(A/N) + HoN. 

But this equation may be written in the form 
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(7) HoN = - <K(A/N) (mod A). 

Let E be any polynomial (not necessarily primary) of degree 
less than a — n. Then we may write 

(8) (Ho + E)N s EN - <BSA/N) (mod A), 

where 

0 < deg(Ei\r - %.(AJN)) < a, 

sgn (EN - <R£A/N)) = sgn EN = sgn E. 

Furthermore, we have the obvious identity 

(10) I I HN = HoN I I (#o + E)N, E^O. 
degH—a—n degE<a—n 

Therefore, by equations (7), • • , (10), 

{HN\ 
1 sgn^j 

degtf= 
II sgn f̂ —) 

, , /H«N\ __ /(H9 + E)N\ 
(11) = s g n 5 l ( — - ) IT sgn<H(- - ^ - ) 

\ A / degE<a-n \ A / 

= - s g n ^ ( —) I I sgn£. 

Now, by the generalization of Wilson's theorem for a Galois 
field, 

I I * = - 1 , bmGF(p'), 
b 

from which it follows at once that 

I I s g n E = ( - 1)-». 
degE<a—n 

Hence (11) becomes 

(12) I I sgn ^(^-) = ( - l)a~n+1 s g n ^ ( - Y 
degff=a-n \ A / \N / degH-

Since 

/HN\ / A \ 
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(12) may also be written in the form 

(13) I l s g n ^ ( - M = ( - 1)— sgn ^ ( i \ 
degtf =a-n \HN/ \N / 

Let us now assume, as we may without any loss of generality, 
that m^n. In (12) replace A by KM, where K is any primary 
polynomial of degree k(k<ri). Then we have 

deg#»fc+ 

_ /HN\ /KM\ 
I I s g n ^ (^T7 = (~ \)k+m~n+l s g n ^ f — - ) . 
ak+m-n \KM / \ N / 

Now let K run through all the prk primary polynomials of de­
gree k ; we get 

^ /HN\ „ /KM\ 
(14) I l s g n î l f — - ) = ( - l)H-—+i I I s g n ^ f — ) . 

degtf»Jfc+m-n \KM / degK-k \ iV / 
degK"=A; 

In a similar manner we may obtain from (13), 

(15) I I sgn ^ ( — 7 ) = ( - D * I I s g n ^ f — - ) . 
degff=*fc+m-n \KM / degH=k+m-n \ M / 

degK^k 

Comparing (14) and (15), we obtain 

T-r /KM\ „ /HN\ 
II sgn^f—-) = (- l)*+-i II sgn^(-—). 

desK-k \ N / desH=k+m-n \ M / 

Therefore 

^ /KM\ , „ / #^ \ 
I I sgn 51 ( -—) = ( - l)-+»2-n H Sgn^f ). 
gK<n \ N / m-n£degH<m \ M / 

degK< 

When we note that 

I I sgnîU-—) = 1, 
degH<m-n \ M / 

the theorem follows at once. 
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