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T H E EXISTENCE OF ALGEBRAIC PLANE CURVES* 

BY T. R. HOLLCROFT 

I. CURVES IN GENERAL 

1. Introduction. In this discussion, only proper or irreducible 
algebraic plane curves are to be dealt with; so, unless otherwise 
stated, the term "curve" will mean an irreducible, algebraic 
plane curve. The treatment will be from the point of view of 
algebraic geometry. General curves will be treated first, fol­
lowed by a discussion of regular and irregular curves. Citations 
are given by number referring to a brief alphabetical bibliog­
raphy at the end of the paper. All results that have been previ­
ously published are accompanied by a citation. 

A curve is of order n, class m, genus p, with 5 nodes, K cusps, 
r bitangents, t statangents (contraction of "stationary tan­
gents"). Julius Plücker [15], just a century ago, discovered a 
very remarkable set of relations involving the above seven 
characteristics. These relations, which may be expressed in vari­
ous ways, are called " Plücker 's equations." When any three 
characteristics are given, the other four are uniquely determined 
by these relations. A curve system, therefore, will be defined by 
given values of three characteristics. B. Segre [ló] has chosen 
the three characteristics n, p, K and represents a curve system 
by the symbol (n, p, K). This notation will be used here. 

The Plücker relations defining m, S, t, r, in terms of n, p, K are 

m = 2{n + p — 1) — K, 

Ô = \{n - 1 ) 0 - 2) - p - K, 

i = 3(n + 2p - 2) - 2K, 

T = i[(2n + 2p - KY - 4(5^ + lp - 6) + I k ] . 

A curve system (n, p, K) includes all curves with the given 
set of characteristics without regard to existence. Other systems 
may be obtained from a given system (n, p, K) algebraically, 
that is, a nodes may be added by decreasing p by a; a cusps 
added by simultaneously increasing K by a and decreasing p by 

* An address delivered before the Society on February 20, 1937 in New-
York, by invitation of the Program Committee. 
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a ; a nodes changed to cusps or a cusps to nodes by respectively 
increasing or decreasing K by a. These statements hold for posi­
tive or negative values of a so that the term "added" implies 
algebraic addition» 

A complete curve system (B. Segre [16], p. 32) is a system 
that is not contained in a larger system of curves with the same 
characteristics. A continuous system is one whose descriptive 
properties only are defined. 

A curve system (w, p, K) will be said to exist, that is, to define 
the characteristics of a curve that exists, when 

(a) The algebraic equation of a curve of this system can be 
written in the polynomial form or in parametric form with one 
or more parameters and it can be proved that its polynomial 
equation cannot be factored, that is, is irreducible. 

(b) A curve of this system can be constructed and proved to 
have an irreducible algebraic equation. 

(c) A curve of this system can be transformed into a curve 
known to exist by any non-degenerate rational algebraic trans­
formation. 

Conditions (b) and (c) are really contained in (a) so that the 
question of the existence of a system (n, p, K) becomes—does 
the curve system define a curve which has an irreducible alge­
braic equation? 

The problem of the existence of plane curves is of basic im­
portance because the existence of curves and manifolds of 
higher space may be made to depend upon that of plane curves. 

In the plane itself, the only noteworthy progress made has 
been in the case of curves whose only singularities are distinct 
nodes and cusps. Snyder [20] in 1908 and Severi [19] in 1921 
proved that curves with no cusps and any number of nodes up 
to and including the maximum exist. For curves with only nodes 
and cusps, the problem of existence is closely related to that of 
determining the maximum number of cusps of a curve. 

2. Conditions for Existence. Conditions for the existence of 
a curve system (n> p, K) are necessary, sufficient, or both neces­
sary and sufficient. 

(1) Necessary conditions. The most obvious necessary condi­
tions for the existence of curves are Plücker's equations. From 
these relations are derived formulas for the maximum number 



I937-] ALGEBRAIC PLANE CURVES SOS 

of cusps (Clebsch [2]; Lefschetz [13]; Hollcroft [8]) of a curve 
of given order and genus. Such limits, called Plücker limits, are 
necessary conditions. 

Cramer [4] in 1750 found certain necessary conditions for the 
existence of curves with multiple points from the maximum 
number of intersections of such a curve with another curve 
through these multiple points. He made a table of the possible 
multiple points for curves of order n ^ 8. Using a similar process, 
Plücker ([15], p. 215) derived the well known necessary con­
dition 6 + ic£i(n-l)(n-2). 

If the reality of the singularities of the curve is taken into 
consideration, Klein's Theorem [12], n+i+2t" =m+k + 2d", 
wherein (i) [k] is the number of real (statangents) [cusps] and 
(/") [d"] the number of isolated (bitangents) [nodes], is an 
additional necessary condition for the existence of the curve. 
The limits to the number of real cusps (Hollcroft [lO], pp. 777, 
781) for a curve of given order and genus, since they are derived 
from this theorem and Plücker's equations, are, therefore, neces­
sary conditions. 

(2) Sufficient conditions. There are few sufficient conditions 
for existence that are not also necessary. Sufficient conditions 
only, however, are given by the two following theorems due 
to B. Segre ([16], pp. 36-37): 

THEOREM 1°. If a continuous regular system in, p, K) exists, 
there exist also the regular systems (n, pi, Ki) where pi and KI 
satisfy the inequalities 0 ^ Ki g K, p ^ pi ^ J (n — 1) (n — 2) — Ki. 

THEOREM 2°. Given two regular systems (nu pi, Ki) and 
(n%, p2, K2), if there exists a curve of one system that touches a curve 
of the other in h simple points, and the additional intersections 
nini — 2h are distinct points, then there exists a regular system 
(n, p, K) such that 

n = nx + n2, p = pi + P2+ h - 1, K = K! + K2+ h. 

Because of the paucity of sufficient conditions for the exist­
ence of curves, these theorems are of great importance. The 
latter theorem has given added significance to the problem of 
determining the maximum number of contacts of two curves of 
given systems. 
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(3) Necessary and sufficient conditions. Conditions that are 
both necessary and sufficient for the existence of curves are 
implied in the definition of existence in the preceding section, 
namely, that an irreducible polynomial equation of the curve 
can be either obtained or proved to exist. The fact that the 
equation is algebraic, rational, integral, and irreducible is suffi­
cient for the curve to satisfy all necessary conditions. 

3. The Dimension of a Curve System. The equation of the 
general curve of order n contains \n(n+3) independent coeffi­
cients. The curves of this system are in (1, 1) correspondence 
with the points of 5n(n+3)/2 and the system is said to be of dimen­
sion n(n+3)/2. The values of a certain number of coefficients 
may be determined in terms of the others by algebraic relations 
associated with geometric conditions on the curve. Such a con­
dition is expressed by a system of a ^ 1 algebraic equations in 
the coefficients. The %(n + l)(n+2) homogeneous coefficients of 
the general system of curves may be considered the homo­
geneous coordinates in Sn(n+3)/2. The system of a independent 
equations in the coefficients that are associated with a certain 
condition thus define uniquely an algebraic manifold i n On(n.j-3)/2 

whose dimension is n(n+3)/2 — a and whose order is the 
product of the degrees of the a equations of the system. (Severi 

[19]). 
Conditions involving relations among the coefficients of a 

curve are of two kinds; first, metric conditions, that is, those 
associated with position in the plane. Metric relations may be 
linear or of any order in the coefficients. The second kind of con­
dition is that defining a property of the curve which is invariant 
under a plane collineation. The associated algebraic relations 
among the coefficients are called invariants of the curve. The 
order of an invariant is always greater than unity. Lefschetz 
([13], p . 24) has proved that a curve of order n and genus 
p^2 cannot have more than %n(n + 3)—8 independent invari­
ants. 

With each node of a curve is associated one invariant and with 
each cusp, two invariants. It has been proved (Severi [lf>]; 
Snyder [20 ]) that the S nodal invariants associated with any 
number ô g \(n — 1) (n — 2) of distinct nodes of a curve of order n 
are independent. It is also true that the cuspidal invariants are 
all independent for curves of low order that have been treated in 
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detail algebraically. Likewise, from Plücker's equations there 
results the necessary relation 

di = \n{n + 3) — ô — 2JC = \m{m + 3) - r - 2t, 

which (for the curve system whose only singularities are distinct 
nodes and cusps) appears to express the well known fact that 
the number of independent coefficients in the equation of a 
curve in point coordinates equals the number in the equation of 
the same curve in line coordinates. 

In 1913, Lefschetz ([13], p. 26) stated his postulate of 
singularities which is to the effect that each distinct cusp of a 
curve is always associated with two independent invariants. 
This postulate is a statement of what had been found true in all 
cases investigated up to that time. It could not be proved true 
in all cases, but the above relation for dó seemed to indicate its 
validity. 

In 1929, B. Segre ([16], pp. 34-35; [17]) discovered a curve 
system with distinct cusps, to be discussed in section 8, that does 
not satisfy the Lefschetz postulate. This contradiction is suffi­
cient to prove that the postulate does not hold in all cases. 

With B. Segre [16], the first virtual dimension of the system 
(ny p, K) is dó =3n+p — K — l. The virtual dimension d0 of a 
curve system with given singularities (not defined in position) 
is the number of independent coefficients that would remain in 
the equation of a curve of this system if all of the singularity in­
variants were considered independent. The effective dimension 
d is the actual number of independent coefficients in the equa­
tion of such a curve system. For a curve system whose only 
singularities are distinct nodes and cusps, dó =d0. 

The effective dimension d of an irreducible curve system is 
also defined as the dimension, reduced by one, of the character­
istic series of the curve. The characteristic series has an index 
of specialty i^O and a deficiency co^O. By the Riemann-Roch 
Theorem, d+u = do+i. B. Segre ([16], p . 33) has proved that 
d^do for all complete, continuous curve systems. He calls a 
curve system regular for which d = d0 and irregular for which 
d>do. 

Although proved not to apply in all cases, the Lefschetz pos­
tulate can now be partially revived, that is, all regular curves 
satisfy the Lefschetz postulate. The converse, however, is 
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not true since other than cuspidal invariants may be depen­
dent (see §10). 

4. Curves with Distinct Nodes and Cusps. In 1913, Lefschetz 
[13] derived from Plücker's equations the following limits to 
the number of cusps of a curve of given order and genus : 

For 0 ^ p ^ po, 

K^§(n+2p- 2); 

po<p ^ * ( » - 2 ) ( » - 3 ) , 

K ^ 2(^ + ^ ) ~ | { l l + ( 2 4 ^ - 8 ^ + 2 5 ) 1 / 2 } ; 

i(n - 2)(» - 3 ) g ^ i ( « - 1)(* ~ 2), 

jc = i ( « - 1 ) 0 - 2) - £. 

In the above formulas, £ 0 = [è{w + l ~ (4w + l)1/2} ] . The genus 
£o is the least genus of the curve systems of minimum class for 
a given n 

The Plücker limits for pSpo and p>po result from the in­
equalities i^O and r ^ O respectively, that is, the fact that none 
of Plücker's numbers can be negative when the curve is irre­
ducible. Curves with the maximum number of cusps for a given 
order and genus have been designated maximal cuspidal curves 
(Hollcroft [9]). 

Lefschetz [13] and Coolidge [3] have established the exist­
ence of maximal cuspidal curves of genus p^po and by Segre's 
Theorem 1° ([16], p. 36), the existence of all curves with dis­
tinct nodes and cusps of genus p^po is proved. All such curves 
are also regular ([16], p. 33). 

If a curve exists, its reciprocal exists. The reciprocals of curves 
of order n and genus p^po when n — 2p + 2 <fc^f (n + 2p — 2) 
are curves of order m for which it may be that p> [§{ra + l 
- (4W + 1)1 '2}]. In such cases, however, the number of cusps i 
of the reciprocal is always less than m + 2p — 2. The existence of 
these curves of genus greater than po does not aid in establishing 
the existence of curves of genus greater than p0 with a number of 
cusps equal to or near the Pllicker limit for that genus. With 
the exception of an irregular system shown to exist in §8, no 
general system of maximal cuspidal curves of genus p>po has 
been proved to exist. 

The two following theorems define curve systems whose re­
ciprocals are maximal cuspidal curve systems, and conversely: 
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1. Every curve system of order n for which K S1 and b^n — 4: is 
the reciprocal of a maximal cuspidal curve system of genus p^po. 

2. Every curve system of order n and class m with K^O cusps 
and d^n — 5 nodes is the reciprocal of a maximal cuspidal curve 
system of order m and genus p such that pQ<p^(m — 2)(m — 3)/6. 

I I . REGULAR CURVE SYSTEMS 

5. B. Segre'S Results. By establishing the completeness of the 
characteristic series* of a complete continuous system of curves 
(n, p, K) for which K<3n and n is sufficiently large,f B. Segre 
([16], p . 33) proved: 

All continuous systems of irreducible algebraic curves whose 
only singularities are distinct nodes and cusps, provided that 
K<3nf are regular, that is for such a system, d0' =d0 = d = 3n 
+P-1-K. 

In the same paper ([16], pp. 36-37), he gave the two 
Theorems 1° and 2°, which have been stated as sufficient condi­
tions for existence in §2. A third theorem, Theorem 3° ( [ ló] , 
p. 37) is derived from Theorem 2° by considering the second 
curve system as a line counted twice, that is, (n^ p2, K2) 
s ( 2 , - 1 , 1 ) . 

THEOREM 3°. If a regular system (nu pi, KI) exists for n{^3, 
there exists also the regular system (n, p, K) such that 

n = % + 2, p = pi + ni — 2, K = KI + % + 1. 

From the four preceding theorems, Segre derives the existence 
theorem : 

There exist continuous regular systems (2n, n2 — 3n + l, n2) for 
n*t3 and (2^ + 1, n2 — 2n + l, n2+n — l) for n^l of irreducible 
curves with only cusps. 

Theorems 1°, 2°, 3° are given without proof. 
There are questions as to the field of validity of Theorem 3° 

* The proof is similar to that of Severi [19] in the case of nodes. Severi 
proved that all continuous systems (n, p} 0) are regular. 

t By PI ticker's equations, the least value of n for which K — Zn is 11. This 
is a self dual curve and probably does not exist. For m^n, when K = 3W, 
m = n(n —10) and£ — l = (m-\-n)/2. The system (12, 19, 36) is the one of lowest 
order for m^n. The least value of n for which this theorem holds when K 
=3w — 1 probably lies between 12 and 17. 
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and therefore of the above existence theorem derived partially 
from this theorem. This will be discussed in section 7. 

6. Zariski1 s Results. Zariski studied the surface zn—f{x, y) 
where ƒ(x, y)=0, the branch curve [2l] of the surface, is an 
algebraic curve with given singularities. In 1929, he proved the 
theorem [22]: 

If n = qa, where q is a prime number, and f(x, y)=0 is an ir­
reducible algebraic curve, then the surface zn=f(x, y) is regular. 

A regular surface F of order n is one for which pg—pa = 0, 
where pa, the arithmetic genus of F, is one more than the virtual 
dimension of the system of adjoint surfaces of order n — 4 and 
pg, the geometric genus of F, is one more than the effective di­
mension of the same adjoint system. The geometric genus is 
also defined as the number of everywhere finite abelian double 
integrals of the first kind associated with the surface F. The 
difference l = pg — pa^0 is called the irregularity of F. 

Let f(x, y)=0 be a curve ƒ of order n with no singularities 
other than distinct nodes and cusps. The surface F with equa­
tion zn =ƒ{x, y) has compound double points at the nodes and 
cusps of ƒ in the plane 3 = 0. An adjoint surface <j>{x, y, z) = 0 of 
order n — 4 does not pass through the ordinary double points of 
F, but may pass through compound double points of F. 

By studying the behavior, at these double points of F, of the 
abelian integrals ff[<t>(x, y, z)/zn~1]dx dy, Zariski ([24], p . 488) 
proved these theorems: 

1. The adjoint surfaces of F do not pass through double points 
of F which are nodes of/. 

2. At each double point of F which is a cusp of/, the adjoint 
surfaces of F have [n/6] consecutive basis points ([^/6] is the 
largest integer contained in the quotient n/6). 

The second result leads to the following limit ([24], p. 500) 
to the number of cusps of an irreducible curve of order n, 

K<h(n- p)(n - 0 - 3) + 2, p = [(» - l ) / 6 ] . * 

For a given n, this limit defines a smaller number of cusps than 
the Plücker limit in certain cases ([24], p. 501). 

* In reference [25], p. 174, the equality sign is also given in this limit. In 
accordance with the derivation, the equality sign is not admissible. 
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7. The Existence of Curves of Genus p^S. Lefschetz ([13], 
pp. 37-39) investigated the existence of curve systems of low 
genus with only distinct nodes and cusps and proved that all 
maximal cuspidal curve systems of genus p^S exist with the 
three exceptions (7, 3, 11), (8, 4, 14), (8, 5, 16). 

As stated in §4, all curves having only distinct nodes and 
cusps and of genus p^po exist. In determining the existence of 
curve systems of genus £ ^ 5 , therefore, it is only necessary to 
deal with curve systems for which po<5. The inequality po<5 
gives n^l6. The reciprocals of all such curves of order n^lO 
are curves of order n ^ 8 which do not have the maximum num­
ber of cusps for that order and genus, so that all exist. For n = 9, 
however, among the reciprocals there are two additional sys­
tems, (7,4,11) and (8, 5,15), which cannot be proved to exist.* 

Zariski ([24], p. 501) has shown that the systems (7, 4, 11) 
and (7, 3, 11) do not exist. This contradicts B. Segre's Theorem 
3°. The curve system of order 7 with 11 cusps is the curve of 
lowest order satisfying the Plücker limits that does not exist.t 

In a separate paper [23], Zariski gives a direct proof by plane 
geometry that the system (8, 5, 16) does not exist. He points 
out in a footnote in his paper ([23], p. 309) that B. Segre has 
stated ([16], p . 38y footnote) that the system (8, 5, 16) exists 
as a result of the preceding theorems of that paper. 

A contradiction between Zariski's limit K<\(n—fi){n— /? — 3) 
+ 2 , /3=[(n —1)/6], and B. Segre's Theorem 3° occurs only in 
the case of curves of orders 7 and 8. B. Segre's existence theorem 
which affirms the existence of regular curve systems (In, 
n2-3n + l, n2), n^3, and (2^ + 1, n2-2n + l, n2+n-l), n^l, 
coincides with the Plücker limit for n^8 and gives a much 
smaller limit for n ^ 9 . The Zariski limit defines a maximum 
number of cusps smaller than the Plücker limit only for the 
six orders n = 7, 8, 13, 14, 19, 25. For all orders except 7 and 8 
(in which cases B. Segre's existence theorem allows 11 and 16 
cusps, Zariski's limit 10 and 15 respectively), the existence state-

* The three exceptional systems given by Lefschetz constitute all of the 
doubtful self dual maximal cuspidal curve systems for pS 5. Of the two addi­
tional systems, (7, 4, 11) is of higher genus than (n — 2){n— 3)/6 for w = 7 and 
(8, 5, 15) is "between" the two doubtful systems of order 8 given by Lefschetz. 

t The conclusion of Crone [5] that the system (6, 2, 7) does not exist is not 
justifiable. 



512 T. R. HOLLCROFT [August, 

ment of B. Segre defines a smaller number of cusps than the 
Zariski limit. 

In addition to showing that the curve systems (7, 4, 11), 
(7, 3, 11) and (8, 5, 16) do not exist, Zariski's theorem ([22], 
p. 494) limits the positions of cusps as follows on certain curve 
systems : 

(7, 5, 10), the ten cusps cannot lie on a cubic; 
(8, 9, 12), the twelve cusps cannot lie at the intersections of 

a cubic and a quartic ; 
(8, 6, 15), the 15 cusps cannot lie on a quartic; 
(9, 7, 21), the 21 cusps cannot lie on a quintic. 

The first two of these cases are mentioned by Zariski ([24], 
p. 502). The existence of the last two curve systems is in doubt, 
but their existence is permitted by the theorem which restricts 
the positions of their cusps. 

The existence of a curve of order 9 with 18 cusps will now be 
established. 

The Cayleyan of an elliptic cubic is a sextic with 9 cusps 
which has nine contacts with the cubic. Therefore the regular 
systems (6, 1, 9) and (3, 1, 0) contain curves that have 9 con­
tacts. Applying Segre's Theorem 2° (see §2), we find that set 
(ni, pi, KI)==(6, 1,9), (w2,̂ >2,/C2) = (3,1,0), and h = 9. The theorem 
then asserts the existence of the regular curve system (9, 10,18). 

The reciprocal of (7, 4, 11) is (9, 4, 17), which does not exist 
since (7, 4, 11) does not exist. In the above paragraph, the sys­
tem (9, 10, 18) has been shown to exist, which implies that all 
curve systems (9, p, K) exist for p^ 10 and K ^ 18. 

This is the first time that the existence has been established 
of a curve with a number of cusps greater than that possessed 
by a curve of the same order that does not exist. This adds a 
new conception to the problem of existence—that distinct 
nodes added to the singularities of an existing curve system with 
only distinct nodes and cusps, within the Pliicker limits, may 
give a system that does not exist. In this case, the system 
(9, 10, 17) exists. Six nodes added to this system give (9, 4, 17) 
whose reciprocal, by Zariski's theorem, does not exist. 

I t is entirely possible, from the following point of view, for the 
system (9, 4, 17) to be non-existent while the system (9, 10, 18) 
exists. Since the system (9, 4, 17) does not exist because 
(and only because, so far as known proofs are concerned) the 
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system (7, 4, 11) has too many cusps for its order, then, recipro­
cally, the system (9, 4, 17) does not exist because it has too many 
statangents for its class. This does not imply that the system 
(9, 4, 17) has too many cusps for its order, but that the com­
bination of 17 cusps and 7 nodes is too much, in that it defines 
a reciprocal system with too many cusps for its order. 

I I I . IRREGULAR CURVE SYSTEMS 

8. The Curve System ƒ. The curve system of order 6a 
2 3 

ƒ = <t>u + X^2« = 0, 

in which </>3a = 0, ^2« = 0 are two entirely general curve systems 
of orders 3a and 2a respectively, has been long known, and it 
has also been known that this system has 6a2 cusps at the inter­
sections of <psa and ^2«. The new property of this system dis­
covered by B. Segre ( [ ló] , p . 34) is its irregularity for a^3. 

The equation of ƒ contains 

J(3a + l)(3a + 2) + (a + l)(2a + 1) - 1 = *(« + l)(13a + 2) 

non-homogeneous coefficients. The proof of the irregularity of ƒ 
consists in showing that all of these coefficients are independent. 
Segre proves this by showing that the system ƒ is a complete, 
continuous, irreducible system of curves with a complete char­
acteristic series. 

The independence of the coefficients is also proved alge­
braically. Of the 6a2 intersections of 03« and ^2a, only 
6 a 2 - ( 2 a - l ) ( 2 a - 2 ) / 2 = ( a + l ) ( 4 a - l ) points chosen on <j>2(X 

count as independent conditions in the determination of $3a . 
Of these (a + l)(4a — 1) points, assume that a(2a+3) are chosen 
arbitrarily, thus determining ^2a, and that the remaining 
2a2 —1 are chosen on ^2a . Then 03a still contains 3a(3a+3)/2 
- - ( a + l ) ( 4 a ~ l ) = § ( a + l ) ( a + 2 ) arbitrary parameters and 
therefore ƒ contains i(a+l)(a+2) + l arbitrary parameters. 
The position of a cusp in the plane is determined by two parame­
ters, on a given curve by one parameter. Of the (a + l)(4a — 1) 
given cusps on ^2«, only a(2a+3) positions are independent 
and account for two parameters each, while the remaining 
2a2—1 positions on ^2a account for one parameter each. Then, 
so far as determining the positions of ( a + l ) ( 4 a — 1) cusps is 
concerned, the number of conditions on ƒ would be 2a(2a+3) 
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+ 2 a 2 — 1 = 6 a 2 + 6 a — 1. If the positions of these (a + l)(4a —1) 
cusps are considered as not given, there would be restored to the 
sys tem/ , on which they were considered as given, 6a2 + 6a — 1 
parameters. It was shown that the system ƒ for which the posi­
tions of these cusps were given contained §(a + l ) (a + 2) + l 
parameters. Therefore a curve system ƒ for which no positions 
of the 6a2 cusps are given contains 

i (« + 1)(« + 2) + 1 + 6a2 + 6a - 1 = J(« + l)(13a + 2) 

independent parameters. 
In the above proof, it was revealed that as to the positions 

of the 6a2 cusps of/: a(2a+3) are independent and require two 
parameters each; 2a2 — 1 are on \[/2a and require one parameter 
each; (a—l)(2a —1) are gratuitous, that is, they follow from 
the above. 

The characteristics of ƒ are these: n = 6a, m = 6a(3a — 1), 
£ = 1 2 a 2 - 9 a + l, 5 = 0, * = 6a2, t = 12a (5a -3 ) , r = 27a (3a -2 ) 
• ( 2 a 2 - l ) , J0 = 3a(2a+3) , d = ( a + l ) ( 1 3 a + 2 ) / 2 , I = d-d0 

= ( a ~ l ) ( a - 2 ) / 2 . 
As will be seen from the characteristics of ƒ, the reciprocal ƒ ' 

of ƒ has r = 0 which is a condition, when p>po, for the maximum 
number of cusps. The reciprocal ƒ' is of order 6a(3a— 1) and 
genus 12a2 — 9 a + l . For this order, the value of po is always less 
than the genus of ƒ ' for all values of a. Therefore this curve 
system ƒ has still another new property—its reciprocal is the 
first maximal cuspidal curve system of general order known to 
exist for p>po. 

Since the system ƒ has no invariants other than cuspidal in­
variants and since for ƒ we have / = (a — l)(a — 2)/2, it follows 
that out of the total of 12a2 cuspidal invariants, / are depend­
ent. This does not mean, necessarily, that some of the cusps of 
ƒ are dependent. Since a cusp is the limiting case of a node, the 
two cuspidal invariants take the place of the nodal invariant. 
Since all nodal invariants have been proved independent, it is 
probable that at least one of the invariants associated with any 
cusp is independent. 

Since in the case of a curve with distinct nodes and cusps, 
do = n(n+3)/2— 5 — 2/c = m(m+3)/2— r — 2t, and since the effec­
tive dimension d of a curve considered as a locus is equal to that 
of the same curve considered as an envelope, I = d — do has the 
same value for the given curve considered either as a locus or as 
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an envelope. Nodal invariants are independent, hence, recipro­
cally, bitangent invariants of a class curve are independent. 
Therefore if a curve, considered as a locus, has a certain number 
ƒ of dependent cuspidal invariants, the same curve considered 
as an envelope has I dependent statangent invariants. 

Therefore the reciprocal of an irregular system of irregularity 
ƒ is an irregular system of irregularity ƒ, and if the original sys­
tem has K dependent cuspidal invariants, the reciprocal system 
has K dependent cuspidal invariants. 

Hence the reciprocal of/, which has been shown to be a maxi­
mal cuspidal curve system ƒ of genus p>po, has (a — 1) (a — 2)/2 
dependent cuspidal invariants. 

The system ƒ is irregular because its cusps occur at the inter­
sections of curves of lower order and not because of an excessive 
number of cusps for the order of ƒ. It is highly probable that 
systems of order 6a with 6a2 cusps, unrestricted a priori in posi­
tion, exist. In the discussion below, this is shown to be true in 
the case a =? 1. 

Zariski ([24], p . 503) has proved the following theorem: 

Iff(x> y) —0 *s an irreducible curve of order n possessing nodes 
and cusps only, a necessary and sufficient condition that the sur­
face zn =ƒ(#, y) be irregular is that n be divisible by six and that 
the system | C(6n-is)/e| of the curves of order (5n—18)/6 passing 
through the cusps of the curve ƒ should be superabundant. If these 
conditions are satisfied, the irregularity of the surface is equal to 
the superabundance of the above system | C(Bn-i8)/e| • 

This theorem requires that all surfaces zn =ƒ(x, y) be regular 
if f(x, y) = 0 is an irreducible curve of order n with only distinct 
nodes and cusps whose order n is not divisible by six. This is 
much more general than the former theorem which required n 
to be the power of a prime in order for zn =ƒ(#, y) to be regular. 

The system ƒ(#, 3>)=03a+X$L = O, under this theorem, is 
the only irreducible system known for which the surface 
zn=f(x, y) is irregular. 

The special case of ƒ for a = 1 defines a system of sextics C6 

with six cusps on a conic. This system C6 is of dimension 
d=do = 15, the same as the dimension of a sextic C6' with six 
cusps in general position.* Zariski ( [2 l ] , p . 320) has proved 

* When the positions of the cusps are given, however, the dimensions of 
these two sextic curve systems are not equal. The C& with 6 cusps at given 
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that C6 is the branch curve of a general cubic surface and that 
the fundamental groups of the two types of sextics are distinct. 
B. Segre ([17], p. 559) has shown that a Ci exists. The fact 
that CQ and C% belong to distinct systems contradicts a theorem 
by Albanese ( [ l ] , part IV). 

The above example gives rise to another discovery in curve 
theory—that a system of irreducible curves with given char­
acteristics (n, p, K) does not necessarily form one irreducible 
complete system (Zariski [25], p . 175). 

The system ƒ is of the form <t>a
2+^bz = 0, 2a = 3b. What are the 

properties of the system defined by this equation when 2a 9^ 3b? 
In order to study this question, consider the continuous sys­

tem 
2 3 

ƒ2 s 03a+l + X^2a = 0. 

This system is of order 6a+2 and has 2a(3a+l) cusps at the 
intersections of 03a+i and ^2«. All of the (13ce2+21a:+6)/2 co­
efficients can be proved independent. Also do = 6a? + 17a+5; 
hence d — d0 = \ (a2 — 13a — 4). For a ^ 13, the system /2 is incom­
plete. For a ^ 1 4 , the system ƒ2, if irreducible, is a complete, 
continuous, irregular system. 

The equations/3 and / 4 of systems of orders 6a+3 and 6ce+4 
respectively may be written similarly and the systems have 
similar properties. 

The surfaces z6oc+i=fi, (i = 2, 3, 4), however, are found to be 
irregular for all values of a for which the above curve systems 
would be irregular. Since the orders of these surfaces are not 
multiples of six, by Zariski's theorem ([24], p . 503), quoted in 
this section, all of these curve systems must be reducible for the 
values of a for which they would be irregular. 

9. The Plane Sections of Tangent Cones. The sections by a 
plane TT of the tangent cones to an algebraic surface of order v 
form a complete, irreducible system of curves of order v(v — \) 

points on a conic is an 004 system and the C£ , the positions of whose cusps are 
independently assigned, is an 003 system. 

For any a, if the positions of all the 6a2 cusps are given, the system ƒ is of 
dimension l + (a+l)(«+2)/2. If the positions of the 6a2 cusps of a curve sys­
tem of order 6a, u^2, are considered independent of each other, the positions 
of only 3a(2a+3)/2 cusps can be chosen arbitrarily and the positions of the 
remaining 3a(2a—3)/2 cusps follow from these. 



"937-1 ALGEBRAIC PLANE CURVES 517 

with K*=V(V-~1)(V~2) and b=*%v{v — l)(v — 2)(P —3). These are 
branch curves of the surface. The parametric equations of such 
a system may be written <f>(x, y, 2 )=0 , dcjy/dz — O, wherein z 
is the parameter and <j> =*0 the equation of the surface. B. Segre 
[13] has proved that, for this system, d — do = (p —2)(P—-3) 
(v — 4) /6 . The system is thus irregular for J > ^ 5 . B. Segre has also 
shown that the nodes and cusps of this system lie at the inter­
sections of curves of lower order. 

10. An Irregular System of Quartic Curves. In the two pre­
ceding sections, two well known curve systems have revealed a 
new property, that of irregularity. In this section, another well 
known curve system, the quartics with three biflecnodes, will 
be shown to be irregular. 

A rational trinodal quartic that has biflecnodes at two of the 
nodes must have a biflecnode at the third node. The equation 
of the tri-biflecnodal quartic may be written in the form 

sf2 + *2-2 = xr2. (Hilton [7], p . 285.) 

Making the sides of the coordinate triangle any three lines of 
the plane and writing the equation in integral form, we see that 

q ss (bx)2(cx)2 + (ax)2(cx)2 — (ax)2(bx)2 = 0, 

wherein (ax)=aiXi+#2#2+#3#3, • • • . The equation q contains 
7 independent coefficients, that is, for the system q, the effective 
dimension d is equal to 7. The system q is continuous and 
complete. 

Each node is associated with one invariant. Distinct statan-
gents account for no invariants on an order curve, but if both 
nodal tangents coincide respectively with two statangents with 
their points of contact at the node, the singularity is associated 
with three invariants (Hollcroft [l 1 ], p . 265). The system q with 
three biflecnodes is therefore of virtual dimension d0 = 5. 

Therefore d — do = 2 and the system q is irregular. The order 
four is evidently the lowest possible order for a complete, con­
tinuous, irregular curve system. 

The reciprocal q' of q is a rational maximal cuspidal sextic 
with the six cusps on a conic and so associated in three pairs 
that each pair has a common cuspidal tangent. These three 
common tangents form a self conjugate triangle of the conic on 
which lie the six cusps. 
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The equation of q' contains the same number of independent 
constants as that of q, that is, d = 7. The invariant postulation 
of two cusps with a common tangent is six, two for each cusp 
and two for the coincident cuspidal tangents. This coincidence 
implies that four tangents coincide, but since there are two dis­
tinct points of contact, the tangent is still a bitangent. The sys­
tem q' has four nodes. For q', therefore, d0 = 27 — 18—4 = 5. 
Hence d — do = 2. 

The most interesting thing about this system q and its recip­
rocal qf is that they exhibit cases of irregular systems in which 
cuspidal invariants are not the dependent invariants. A prop­
erty of the reciprocal of the tri-biflecnodal quartic is stated 
as follows: If a rational maximal cuspidal sextic has two pairs 
of cusps so situated that the cuspidal tangents of both pairs 
coincide, the cuspidal tangents of the third pair must coincide. 
The sextic is considered as having the cusps before these further 
conditions are applied. Thus in the case of q', the two dependent 
invariants are associated with the coincidence of the third pair 
of cuspidal tangents. In the case of g, the two dependent invari­
ants are associated with the coincidence, respectively, of two 
statangents with the two nodal tangents at the third node. 

In both cases, the dependent invariants are associated with 
the coincidence of tangents, but not with the coincidence of 
nodal tangents to form a cusp. 

11. Curve Systems with Negative Virtual Dimension. It is un­
likely that curves exist with only distinct nodes and cusps for 
which do is negative, although this is permitted by Pliicker's 
equations. However, systems with higher singularities may exist 
for which d 0 < 0 . 

The irregular system ƒ is a special case of a general system of 
the form </>L+X^aa = 0, a>b. This system is of order aba with 
aba2 compound 5-fold points, each with b coincident tangents. 
The curve system is irregular and may be reducible for certain 
values of a, ô, a. Its effective dimension is easily found, but the 
virtual dimension is difficult to obtain in a general case because 
each multiple point contains latent consecutive multiple points. 

If & = & + l, the &-fold points are simple multiple points with 
b coincident tangents. The system ƒ& is of order ab(b + l) and 
has a2b(b + l) simple multiple points of order b at the inter­
sections of <£a& = 0 and ^ a ( & + i )=0. Each &-fold point contains 
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(penultimately) 6 — 1 cusps and (6—1)(6 —2)/2 nodes and is 
associated with (b2+3b — 6)/2 invariants. Hence 

do = ab(b + l)(6a - lab + 3)/2. 

The coefficients of ƒ& are independent, so that for ƒ6 

d - do = JaJ[(ft + 1)(2«6 - 6a - 3) + («6 + a + 3)] 

+ *(«+ l)(a + 2). 

Setting do<0 and solving for 6, we see that d 0 < 0 for ce = l, 
6 ^ 5 , and for a = 2, 6 ^ 4 . 

The curve system of lowest order of this form for which d0 

is negative is of order 30 (a = 1, b = 5) and has the equation 

7 = 056 + XiA6
5 = 0. 

The system y has 30 simple 5-fold points, each with 5 coincident 
tangents and is of genus 135. Each 5-fold point is associated 
with 17 invariants. For 7, therefore, d = 48, d0 = 495 — 510 = 
- 1 5 , and d-d0 = 48- ( - 15) = 63. 

For a = 2, 6 = 4, the curve system is 

fX SE 0 8
5 + Xl̂ lO4 = 0. 

The system ju is of order 40 and has 80 quadruple points, 
each with four coincident tangents. For this system, d = 110, 
Jo = 8 6 0 - 8 8 0 = - 2 0 and d-d0 = 130. 

It may be that equations of this form do not always repre­
sent irreducible systems. The above systems 7 and /JL, however, 
satisfy the known necessary conditions for existence, possess 
only distinct, simple multiple points, and have a negative vir­
tual dimension. 

An interesting question is raised by systems of this kind, 
as to whether the d — do dependent invariants occur entirely 
among the cuspidal invariants implied in the multiple points 
(of which each &-fold point has 6 — 1), or entirely among the 
combination invariants (of which each simple multiple point of 
order 6 has 6 — 2), or among both of these sets of invariants. In 
the examples of irregular curve systems given in the preceding 
sections, the dependent invariants have always been associated 
with the coincidence of tangents, and with the coincidence of 
nodal tangents to form a cusp except in the case of the irregular 
system of quartics discussed in the preceding section. 



520 T. R. HOLLCROFT [August, 

BIBLIOGRAPHY 

1. Albanese, G., Sut sistemi continui di curve plane algebriche, Pisa, 
Nistri, 1923. 

2. Clebsch, A., Journal fur Mathematik, vo!. 64 (1864), p. 51. 

3 . Coolîdge, J. L., On the existence of curves with assigned singularities, 
this Bulletin, vol. 28 (1922), pp. 451-455. 

4. Cramer, G., Introduction à VAnalyse des Lignes Courbes Algébriques, 
Geneva, 1750, pp. 455-459. 

5. Crone, C , Sur une espèce de courbes symmetriques de la sixième classe, 
Acta Mathematica, vol. 2 (1883), pp. 81-96. 

6. Haskell, M. W., The maximum number of cusps of an algebraic plane 
curve and enumeration of self dual curves, this Bulletin, vol. 23 (1917), pp. 164-
165. 

7. Hilton, H., Plane algebraic curves, Oxford, 1920. 

8. Hollcroft, T. R., Singularities of curves of given order, this Bulletin, vol. 
29 (1923), pp. 407-414. 

9. Hollcroft, T. R., Maximal cuspidal curves, Annals of Mathematics, 
(2), vol. 26 (1924), pp. 37-46. 

10. Hollcroft, T. R., On the reality of singularities of plane curves, Mathe­
matische Annalen, vol. 97 (1927), pp. 775-787. 

11. Hollcroft, T. R., Invariants associated with singularities of algebraic 
curves, Acta Mathematica, vol. 56 (1930), pp. 261-272. 

12. Klein, F., Eine neue Relation zwischen den Singularitdten einer alge-
braischen Kurve, Mathematische Annalen, vol. 10 (1876), pp. 199-209. 

13. Lefschetz, S., On the existence of loci with given singularities, Transac­
tions of this Society, vol. 14 (1913), pp. 23-41. 

14. del Pezzo, P., Equazione d'una curva del quinto ordine dotata di cinque 
cuspidi, Rendiconti, Accademia delle Scienze Fisiche di Napoli, (2), vol. 3 
(1889), pp. 46-49. 

15. Plücker, J., Theorie der algebraischen Curven, Bonn, 1839. 

16. Segre, B., Esistenza e dimensione di sistemi continui di curve piane 
algebriche con dati caratteri, Lincei Rendiconti, (6), vol. 10 (1929), pp. 31-38. 

17. Segre, B., Esistenza di sistemi continui distinti di curve piane algebriche 
con dati numeri plueckeriani, Lincei Rendiconti, (6), vol. 10 (1929), pp. 557-560. 

18. Segre, B., Sulla caratterizzazione delle curve di diramazione de piani 
multipli generali, Memorie, Reale Academia d'Italia, Classe di Scienze 
Fisiche, Matematiche e Naturali, vol. 1 (1930), pp. 5-31. 

19. Severi, F., Vorlesungen iiber algebraische Geometrie, Severi-Löfïïer, 
Berlin, 1921, Anhang F, pp. 307-353. 

20. Snyder, V., Construction of plane curves of given order and genus, having 
distinct double points, this Bulletin, vol. 15 (1908), pp. 1-4. 

21 . Zariski, O., On the problem of existence of algebraic f unctions of two vari­
ables possessing a given branch curve, American Journal of Mathematics, vol. 
51 (1929), pp. 305-328. 



1937-1 JENSEN'S INEQUALITY 521 

22. Zariski, O., On the linear connection index of the algebraic surfaces 
zn—f{x, y), Proceedings of the National Academy of Sciences, vol. 15 (1929), 
pp. 494-501. 

23. Zariski, 0 . , On the non-existence of curves of order 8 with 16 cusps, 
American Journal of Mathematics, vol. 53 (1931), pp. 309-318. 

24. Zariski, O., On the irregularity of cyclic multiple planes, Annals of 
Mathematics, (2), vol. 32 (1931), pp. 485-511. 

25. Zariski, O., Algebraic Surfaces, Ergebnisse der Mathematik^ vol. 3 
(1935), pp. 160-181. 

W E L L S COLLEGE 

JENSEN'S INEQUALITY* 

BY E. J. MCSHANE 

The simplest form of Jensen's inequality is that if 4>{x) is a 
convex function, and m is the arithmetic mean of Xi, • • • , xn, 
then the mean of the numbers <j>(xn) is not less than 0(m). This 
inequality can be generalized in several different ways. The 
function <j>(x) can be replaced by a convex function of several 
variables, and the arithmetic mean can be replaced by any one 
of several other means, as has been shown in various proofs. 
Since the inequality is of considerable utility, it seems worth 
while to have it established in a form which is general enough to 
cover a wide assortment of applications. 

The proofs will rest on two well known properties of convex 
sets, f If K is closed and convex and a point p is not in K, then 
p can be separated from K by a hyperplane. If K is closed and 
convex and p is a boundary point of K, there is a hyperplane of 
support of K passing through p. 

1. The Inequality in Geometric and in Analytic Form, It will 
be convenient in the following proofs to use these symbols and 
definitions : 

Rn is w-dimensional Euclidean space. Its points will be de­
noted by fa, - • • , zn) or by z. Linear functions ^Z0^»' o r ^n 
will be symbolized by l(z). 

* Presented to the Society, December 31, 1936. 
t A set is convex if for every pair P, Q of points of the set the line segment 

PQ is contained in the set. 


