
1937-1 DISTANCE FUNCTIONS AND METRIZATION 133 

DISTANCE FUNCTIONS AND T H E 
METRIZATION PROBLEM* 

BY A. H. FRINK 

1. Introduction. The metrization problem f is concerned with 
conditions under which a topological space is metrizable, that 
is, is homeomorphic to a metric space. A space is metric if to 
every two points a and b, a non-negative real number ab is 
assigned satisfying the well known conditions : 

I. ab = Oifandonlyifa = b; 
II . ab = ba, (symmetry); 

I I I . ac^ab+bc, (triangle property). 
A metrization theorem is usually proved by actually introducing 
such a distance function into the space. However, it is often 
easier to introduce first into a topological space a distance func­
tion satisfying the following conditions IV or V instead of H I : 

IV. If ab<e and cb<e, then ac<2e (generalized triangle prop­
erty) ; 

V. For every e > 0 there exists 0(e) > 0 such that if ab<4>(e) 
and cb<<j>(e), then ac<e (uniformly regular). 

Condition V reduces to IV if 0(e) =e /2 . ChittendenJ has 
shown that a space with a distance function satisfying I, II, and 
V is metrizable. Chittenden's proof is somewhat long and com­
plicated. Furthermore, while the existence of a distance function 
satisfying III is proved, it is not defined directly in terms of 
the original distance function satisfying V. Alexandroff and 
Urysohn§ make use of Chittenden's theorem introducing a 
metric satisfying IV. Niemytski|| and W. A. Wilson^f make use 
of Alexandroff and Urysohn's result. 

Without relying on Chittenden's theorem, the present paper 
gives a simple, direct proof that a topological space with a dis­
tance function satisfying I, II, IV is metrizable. The method 

* Presented to the Society, September 1, 1936. 
f See Chittenden, this Bulletin, vol. 33 (1927), pp. 13-34. 
t Transactions of this Society, vol. 18 (1917), p. 161. 
§ Comptes Rendus, vol. 177 (1923), p. 1274. 
|| Transactions of this Society, vol. 29 (1927), p. 507. 
If American Journal of Mathematics, vol. 53 (1931), p. 361, 
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used gives a direct proof of Chittenden's theorem itself. By 
means of this method it is also possible to simplify greatly the 
proofs of several well known metrization theorems by intro­
ducing the final metric directly in terms of the original condi­
tions. As further applications of this method of introducing a 
triangle axiom metric, some new metrization theorems are 
proved for spaces with unsymmetric distance functions and in 
terms of the neighborhoods of spaces satisfying HausdorfFs first 
countability condition. 

2. Condition IV and Chittenden's Theorem. LEMMA. If a, xu 

#2, • • • , %n, b are any n-\-2 points of a space with a distance 
function satisfying I, II, and IV, then 

(1) ab ^ 2axi + Ax\x2 + Ax2Xz + • • • + 4#n_i#n + 2xnb. 

PROOF. Suppose the lemma false. Then there is some value 
of n for which (1) does not hold. Let N be the smallest such 
integer. Then 

(2) ab > 2axi + 4xix2 + 4x2x3 + • • • + ±%N-IXN + 2xNb, 

while (1) holds for n<N. Now JV>1, for with « = 1 , the re­
lation (1) is a consequence of IV. It follows from IV that for 
every xr either 

(3) ab S 2axr, 

or 

(4) ab S 2xrb. 

If r = l, (3) does not hold because of (2), hence (4) does. Like­
wise (4) does not hold for r = N. Let k be the largest value of r 
for which (4) holds. Then k <N, and 

(5) ab ^ 2xkb. 

From the definition of k, 

(6) ab ^ 2axk+i. 

Since (1) holds for n<N, 

(7) xkb S 2xkxk+i + 4:Xk+ixk+2 + • • • + 4CXN-IXN + 2xNb, 

and 
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(8) axk+i ^ 2ax\ + 4#ix2 + • • • + 4#&_i#& + 2xkXh+i. 

Adding (7) and (8) and combining with (5) and (6) gives 

(9) ab ^ 2axi + 4xix2 + • • • + 4=xN-ixN + 2xNb, 

which contradicts (2). 
In a space with a distance function satisfying I, II , and IV, 

this lemma makes it possible to define a new distance function 
satisfying III in the following simple way. Given two points 
a and b, let xi, x2, • • • , xn be any finite number of points of the 
space, not necessarily distinct from each other or from a and b. 
Define d(ab) to be the greatest lower bound of axx+xix2+ • • • 
+xn-.\Xn-\-xnb for all possible selections of xi, x2, • • • , xn in 
the space.* Then it follows from the lemma that ab/4 Sd(ab) ^ ab. 
Hence the distance function d(ab) leads to the same definition 
of limit point as the old distance function and is equivalent to it. 
It clearly satisfies I, II, and III . 

The same method can be used to prove that a space with a 
distance function satisfying I, II, and V is metrizable. Because 
a distance function satisfying III is necessarily continuous,while 
one satisfying IV or V is not, Chittenden's proof of this theorem 
made use of the result that a normal space has non-constant 
continuous functions. The following method is more direct. If 
the given distance function satisfies V, it may be assumed that 
0(e) ^ e / 2 , since </>(e) may be replaced by any \f/(e) ^<t>(e). Let 
r i = l , r2=0(fi) , • • • , rn+1=<l)(rn), (w = l , 2 , • • •)• Then rn->0. 
If ab^ri, define d(ab) = l. If rw>a&="rn+i, define d(ab)=2~n. 
Then if ab satisfies V, d(ab) satisfies IV. Furthermore, we see 
that d{ab) is equivalent to ab since, if aan approaches zero, so 
does d{aan), and conversely. Now let 5(ab) be the greatest 
lower bound of d(axi) +d(xix2) + • • • +d(xn-\xn) +d(xnb) for 
all xi, x2, - - • , xn of the space. Then as above, ô(ab) satisfies 
III and is equivalent to ab. This proves Chittenden's theorem 
that a space with a symmetric, uniformly regular distance func­
tion is homeomorphic to a metric space. 

3. Conditions of Alexandroff and Urysohn, Niernytski, and 

* The same method of introducing a metric has recently been used by 
Carrett Birkhoff, Compositio Mathematica, vol. 3 (1936), p. 429. I have 
learned from Chittenden that M. Aronszajn in 1933 found a different proof of 
a slightly weaker form of the above lemma, which has not yet been published. 
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W. A. Wilson. The following conditions, due essentially to 
Alexandroff and Urysohn (loc. cit.) are necessary and sufficient 
that a neighborhood space (espace V of Fréchet) be metrizable : 

There exists in the space H a sequence of families of sets {Gi}, 
{Ö2}, • • • , { G n } , • • • , the logical sum of all the sets {Gn} of 
any one family being the entire space H, such that: 

A. If two sets Gn and Gn' of the nth family (n>l) have a com­
mon point, then they are both contained in some set Gn-i of the 
(n-l)th family. 

B. If a and b are distinct points, there exists an n such that no 
set Gn of the nth family contains both a and b. 

C. Let Sn(x) be the logical sum of all sets Gn of the nth family 
which contains the point x. Then the sets {Sn(x)} form a complete 
system of neighborhoods of the point x. 

The condition corresponding to C originally given by Alexan­
droff and Urysohn implied that the sets {Gn} are all open. The 
form given here is more convenient for the applications to be 
made later in this paper to cases where the sets {Gn} are not 
necessarily open sets. 

Alexandroff and Urysohn gave the following method of intro­
ducing a metric satisfying I, II, and IV if conditions A, B, and 
C are satisfied. If no Gn contains both a and b, define ab^l. If 
n is the largest integer such that a and b are both contained in 
some set Gn, define ab = 2~n. This distance satisfies IV. Alex­
androff and Urysohn then used Chittenden's theorem. By 
combining this method with the method of the present paper, 
a metric satisfying I, II, and III may be introduced directly 
and independently of Chittenden's result as follows. For con­
venience let {Go} be a single set H, the entire space. Call a 
collection of sets Gnv Gn2, • • • , Gnk of the covering families a 
chain joining a and b provided GUl contains a and Gni contains b, 
and two successive sets of the chain have a common point. 
Define the length of the chain to be ^r==12~nr, where nr de­
notes the family to which Gnr belongs. There exists at least one 
chain joining any two points a and b, namely, G0. Now define 
d{ab) to be the greatest lower bound of the lengths of all chains 
joining a and b. This distance satisfies I, II, and III , and leads 
to the same definition of limit point as the original neighbor­
hoods if conditions A, B, and C are satisfied. This shows the 
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sufficiency of Alexandroff and Urysohn's conditions. The neces­
sity follows from the fact that in any space with a distance func­
tion satisfying I, II, and IV, the spherical neighborhoods of all 
points of the space with radius 2~n, (n = l, 2, • • • ), form a 
sequence of families {Gn} satisfying A, B, and C. 

Niemytski and W. A. Wilson (loc. cit.) consider the following 
conditions : 

Via. Given a point a and a number e>0 , there exists a number 
4>(a, e) > 0 such that if ab<4>(a, e) and cb<4>(a, e), then ac<e. 
(Called by Niemytski the local axiom of the triangle.) 

VIb. If aan—>0 and bnan-+0, then abn—>0. (Coherent.) 
Vic. For each point a and each positive number k, there is a 

positive number r such that if b is a point f or which ab^k, and c 
is any point, then ac+bc^r. (This is Wilson's condition IV.) 

Niemytski has noted that Via and VIb are equivalent and Vic 
is easily seen to be equivalent to Via. Any distance function 
which satisfies these conditions may be called locally regular by 
analogy with V, which is called uniformly regular. By using 
Alexandroff and Urysohn's result and Chittenden's theorem, 
it has been shown that a space with a distance function satisfy­
ing I, II, and VI is metrizable. 

This result can be established directly by the method of the 
present paper. Using Via and assuming <f>(a, e) ̂  e/2, let \p(a, e) 
= <t>[a, cj>(a> e)]. For every point x of the space define ri(x) = 1, 
and rn+i(x)=\[/[x, rn(x)], (w = l, 2, • • • ). Then rn(#)—>0. Let 
Vn(x) be the spherical neighborhood with center x and radius 
rn(x), that is, Vn(x) consists of all points y such that xy<rn(x). 
Then the sequence of families of sets { V\(x)}, { F2(x) } , • • • , 
where x ranges over the entire space, satisfies the conditions 
A, B, C imposed on the sets Gn of the modified Alexandroff and 
Urysohn theorem given above. Hence a metric can be intro­
duced in exactly the same way as has been indicated for that 
theorem. 

4. Unsymmetric Distance Functions. Most distance functions 
treated in the literature satisfy condition II . W. A. Wilson* 
has considered spaces with unsymmetric distance functions, but 
not in connection with the metrization problem. With an un-

* American Journal of Mathematics, vol, 53 (1931), p. 675. See also 
Fréchet, Les Espaces Abstraits, p. 217. 
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symmetric distance function, it is necessary to be specific as to 
the definition of limit point in terms of distance. The definition 
to be used here is as follows : the point x is said to be a limit point 
of the set A if, for every e >0 , there exists a point of the set A such 
that 0<xa<e. It is not necessary that 0 < a x < e . Likewise, the 
point a is said to be the sequential limit of the sequence of 
points {an} if aan—-K). It is not necessary that ana—»0. 

Lindenbaum* has shown that condition II may be omitted 
from the postulates for a metric space if condition III is re­
placed by 

I l ia , ac^ab+cb. 
The distance function is still symmetric, however, since II is a 
consequence of I and I l ia . Condition II may also be omitted 
if I and IV, or I and V are assumed. 

THEOREM 1. A space with an unsymmetric, uniformly regular 
distance f unction is metrizable. 

PROOF. Suppose ab satisfies I and V. With a = b,V gives the 
result: if ca<(j>(e), then ac<e. Hence aan—>0 if and only if 
ana—>0. The distance function ab may not be symmetric. Let 
d(ab) be the maximum of ab and ba. Then d{ab) is symmetric 
and satisfies V, and with the same function 0(e). For if d{ab) 
<0(e) and d(bc) <0(e) , then ab<(/>(e), and cb<4>{e). Hence V 
implies that ac<e and ca<e and hence d(ac) <e. The distance 
d(ab) is seen to be equivalent to ab. The same method may be 
used for condition IV, which is a special case of V. 

If the distance function is locally regular instead of uniformly 
regular, that is, if condition VI is satisfied instead of V, condi­
tion II may not be omitted if the space is to be metrizable. For 
an example can be constructed of a space with a countable 
number of points and a distance function satisfying I and VI 
in which not every derived set is closed. 

Corresponding to VI for unsymmetric distance functions, how­
ever, the following condition involving four points instead of 
three implies with I that the space is metrizable. 

VII. Given a point a and a number e>0 , there exists a number 
cj>(a, e) > 0 such that if ab<4>(a, e), cb<<j>(a, e), cd<4>(a, e), then 
ad<e. 

* Fundamenta Mathematica, vol. 8 (1926), p. 111. 
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THEOREM 2. A space with an unsymmetric distance function 
ab satisfying I and VII is homeomorphic to a metric space. 

PROOF. Assume <j>(a, e )^e /2 . Let ri(a) = l, r2(a)=4>(a, n), 
• • • , rn(a)=<j>{a, rn-i). Then rn(a)—>0. Let Un(a) consist of all 

points x such that ax<rn(a). Now for two points a and b, if 
Un(a) and Un{b) have a point x in common, w > l , then either 
Un(b) c Un-i(a) or Z7n(a) c Un-i(b). For suppose rn(a) ^rn(b). 
Then ax<rn(a), bx<rn(b) ^rn(a). For any point y in Un(b), 
by<rn(b)^rn(a)=4>(a, rn_3). Hence by VII, a;y<;v_i(a), that 
is, J7n(6) c Z7n_i(a). Similarly, if r n(a)>r n(6) , Un(a) c Un-i(b). 
Now define a distance function d(#ô) as follows. If a and 6 are 
not both in any Un(x), then d(ab) = 1. If a and & are in £/n(x) for 
some x but not both in Un+i(y) for any y, define d(ab)^2~n. 
For any a and 6 there will be some n such that no Un(x) con­
tains both a and ô, namely, an n such that"21~w<</>(a, aè). For 
if, for some x, Un(x) contained both a and b, then obviously 
aa<(f>(a, ab). Also xa<rn^2l~n<<p(a, ab), xb<rn<<j>(a, ab). 
Then VII gives ab<ab, which is a contradiction. The dis­
tance function d(ab) leads to the same definition of limit point 
as the distance function ab; that is, if aak—>0, d(aa&)—»0, and 
conversely. For, given a and e>0 , there is an n such that 
rn_i(a)<€. Choose m so that 2~ m O n ( a ) . Then if d(aak) <2~m, 
from the definition of d(aak), there is an x such that a and 
ak are both in Um+i(x). Then xa<fm + i(x) ^ 2 ~ m O n ( a ) and 
xak<rm+i(x)^2~m<rn(a). Hence, by VII, aak<rn_i(a) <e. 
Conversely, for e>0 , there is an n such that 2~n<e. Now if 
aak<rn(a), then a and ak are in Un(a), and hence, by the defini­
tion of d(aak)y d{aak) ^2~n<e. The new distance function d(ab) 
satisfies IV. If d(ab) <2~n and d(bc)<2~n, then a is in some 
Un+i(x) and c in some Un+i(y), with the point b in common. 
Hence both a and c are in either Un(x) or else in Un(y), that 
is, ac^2~~w<21~w. Since I and IV are satisfied, the space is 
metrizable. 

As Fréchet has shown,* a distance function satisfying con­
dition I, but in general unsymmetric, can be introduced into a 
neighborhood space if the neighborhoods of each point x form a 
monotonie decreasing sequence Ui(x), U2(x), • • • , Un(x), • • • , 
whose logical product is x. To do this, if n is the smallest integer 

* Les Espaces A bstraits, p. 217. 
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such that Un(a) does not contain b, define a& = 2~ \ This suggests 
the following metrization condition analogous to VII but stated 
in terms of neighborhoods. 

VIII . For every point a of a neighborhood space and every in­
teger n there exists an integer m(a,n) >n such that if b is any point 
for which Um(a) and Um(b) have a point in common, then Um(b) 
c Un(a). 

THEOREM 3. If the neighborhoods of every point x of a space 
form a monotonie decreasing sequence Ui(x), U^x), • • -, 
Un(x), • - • , whose logical product is x, and if condition VIII is 
satisfied, then the space is homeomorphic to a metric space. 

PROOF. For each point x select a subsequence of its neighbor­
hoods { Un(x)} as follows. Let nx(x) = 1, n2(x) =m[x, tii(x)], • • • , 
nr+i(x) =m[x, nr{x)}. Let Vi(x) = Unx(x), Vr(x) = Unr{

x)i ( / = 1> 
2, • • • ). Then if the sets Vr(x), (V=l, 2, • • • ), satisfy condi­
tions A, B, C of Alexandroff and Urysohn, the theorem is 
proved. Suppose that Vr(a) and Vr(b), (r>l), have a point in 
common and suppose nr(a) ^ nr(b). For convenience, let p = nr(a) 
and q = nr(b). Since the neighborhoods are monotonie decreasing, 
Uq(b)cUp(b)- Then if Vr(a) = Up(a) and Vr(b) = Uq(b) have 
a point in common, Up{a) and Up(b) have a point in common. 
But p==nr(a)^m[a, nr„i(a)]. Hence, by VIII , Vr(b) c Vr-i(a). 
Likewise, if nr(a) >nr(b), then Vr{a) c Vr~i(b). Hence condition 
A of Alexandroff and Urysohn is satisfied. 

Condition B is also satisfied. For two points a and c, there 
is a Un{o) which does not contain c since the logical product 
of U\(x), Uz(x), - - - is x. By VIII , for any given a and n, 
there exists an m(a, n)>n. For this m, no set Vm(x) contains 
both a and c. Suppose some Vm{x) contains both a and c. Since 
Um(x) D Unm(x) = Vm(x), Um(x) contains both a and c. Since 
m>n, Um(a) c Un(a). Hence Um(x) and Um(a) have a point in 
common, namely a. Hence, by VIII , Um(x) c Un(a). But Um(x) 
contains a and c and therefore Un{o) contains a and c, which is 
a contradiction. 

As for condition C, let Sr{a) be the logical sum of all sets Vr(x) 
which contain a. Since Sr(a) 3 Vr(a) = Unr(a), Sr(a) is a neigh­
borhood of a. Now for a given a and r, by VIII , there exists 
an m(a, r). For this m, Sm(a) c Ur(a). For, let b be any point 
of Sm(a), that is, b is any point of a set Vm(x) s Un(x) which 
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contains a. Now Um(x)D Unm{x). Hence Um(x) contains a as 
well as b\ also Um(a) contains a. By VIII then, Um(x) c Ur(a). 
Hence b c Um{x) c Ur{a) and Sm(a) c Ur(a). 

Since conditions A, B, C are satisfied, a distance function 
which satifies I, II, and III can be introduced directly in terms 
of the neighborhoods { Vr(x)} by means of the notion of a chain 
of these neighborhoods joining two points a and b. 

This theorem gives conditions for the metrization of neigh­
borhood spaces and a comparatively simple method of intro­
ducing the metric. It should be noted that condition VIII is a 
local condition in the sense that it is concerned with the neigh­
borhoods of a single point a. 

Condition VIII is not necessary for metrizability, but a 
necessary and sufficient condition can be given in terms of it. 

THEOREM 4. A necessary and sufficient condition that a neigh­
borhood space be homeomorphic to a metric space is that for every 
point x there exists a sequence of neighborhoods, monotonie de­
creasing, and whose logical product is x, selected from the original 
neighborhoods and equivalent to them, satisfying VIII . 

PROOF. The preceding theorem proves the sufficiency of the 
condition. To prove the necessity, suppose the neighborhood 
space is metrizable. Then a distance satisfying I, II, and III 
may be introduced such that the spherical neighborhoods with 
this distance function are equivalent to the given U neighbor­
hoods. Then every U neighborhood of x contains a spherical 
neighborhood of x and conversely. For each point x of the 
space, select Ui(x) such that the diameter of U\{x), namely 
d[Ui(x)], is less than 1/2, and select U2(x) so that U2(x) c Ui(x) 
and d [U2{x) ] < 1/4, and in general Un(x) so that Un(x) c Un-\(x) 
and d[Un(x)] <2~n. That the selection can be made in this way 
follows from the fact that the U neighborhoods and these spher­
ical neighborhoods are equivalent. The sequence { Un(x)} is 
obviously monotonie decreasing, its logical product is x, and it 
is equivalent to the original neighborhoods. To show that VIII 
is satisfied suppose a point a and an integer n are given. Then 
Un{a) contains a spherical neighborhood of a, S(a). Call the 
radius of this spherical neighborhood r and select m so that 
2l~m<r. Then this is the m required by condition VIII . For sup­
pose Um(a) and Um{b) have a point x in common, and let y be 
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any point of Um(b). Then ax<2~m and xy<2~m from the condi­
tion on the diameters of Um(a) and Um(b). Hence we have 
ay<2l~m<r, and therefore y is in S (a), which is contained in 
Un(a). Hence Um(b) c Un(a). 

The condition of this theorem has an advantage over the con­
dition of Alexandrofï and Urysohn. The latter condition postu­
lates the existence of families of covering sets {Gn} having cer­
tain properties, and in terms of these sets the distance function is 
defined. Given a neighborhood space, it might be difficult to 
determine whether such families of sets {Gn} could be found. 
The condition of the present theorem also leads to the existence 
of such sets with the additional information that they are to be 
found among the original neighborhoods of the space. 

T H E PENNSYLVANIA STATE COLLEGE 

AN INVOLUTORIAL LINE TRANSFORMATION 
D E T E R M I N E D BY A CONGRUENCE OF 

TWISTED CUBIC CURVES* 

BY J. M. CLARKSON 

1. Introduction. Consider the pencils of quadric cones 
K% — ceî 2 = 0, L\—j8Z,2 = 0, each pencil having a common vertex 
which lies on all of the cones of the other pencil. For a given 
a, ]8 the curve C(a, /3) of intersection of the cones is composite, 
consisting of the line I of the vertices of the two pencils and 
a twisted cubic curve Cz(a, j3). As a, /3 take on all values inde­
pendently, C&(a, j8) describes a congruence of space cubic curves. 
An arbitrary line / of space will be bisecant to just one Ca(a, j3), 
for any three points of space will determine a set of values for 
the parameters a, /3, p in the system 

(1) (£ i - aK2) - p(Zx - pL2) = 0 

of quadric surfaces, and if these three points be chosen on /, 
then / lies on the quadric of (1) so determined and will meet 
C3(a, ]8) twice. We shall henceforth write Cz{t) for this curve. 

Now consider a fixed plane w and in this plane a Cremona 
involutorial transformation V of order n having a curve Am of 

* Presented to the Society, December 27, 1934. 


