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ON T H E EXPANSION OF A FUNCTION ANALYTIC 
AT DISTINCT POINTS 

BY P. W. KETCHUM 

1. Introduction. Let &i, #2, • • • , av be a set of distinct points 
in the complex plane.* If Ok(x) is any function which is analytic 
at ak and has a simple zero at #&, then for any sufficiently small 
positive number ô the level curve | 0*0x01 =8 will have one 
branch, Cg(fc), which satisfies the conditions (a) a& is interior to 
the curve C§(fc), (b) C£k) is a simple closed analytic curve, (c) a,k 
is the only zero of Ou(x) either inside or on C§w . Furthermore, if 
ô' and 5" are any two values of ô such that dn>ô', then CV'(A;) 

contains Cs'(fc) in its interior. 
Let Fn,m(x), (w = 0, 1, 2, • • • ; m = 1, 2, • • • , v), be a set of 

functions all of which are holomorphic in and on each of the 
curves Cék}, and let each function have a zero of order n at am 

and a zero of higher order than n at all the other points a&, 
(k^m). Then in and on C#(m), we have the Bürmann series f 

(1) Fn,m(x) = ] £ £n,«' [0mO)] = [0m(^)] P n,m,m 

where 4 X ^ 0 . In and on CB
(fc> , ( ^ m ) , w e have 

00 

(2) Fntm(x) = 2-< cn>s [6k\x)\ = |0*WJ -^Vm.fcO). 

We assume that these functions have been normalized so that 
4wdm) = l. Denote by 6n,„ O = 0, 1, • • • ; s = 0, 1, • • •)» any set 
of positive numbers, independent of £, such that &n,o = l and 

Y^ (w.A;) 
0n,s = ^ Cn,«—l+8(m,&) 

I m=l t 

for 5>0 , where 8(ra, fe) is Kronecker's symbol. Put 

* In the work to follow the points ak are assumed finite but the extension 
to the case where one point a& is the point at infinity is immediate, 

f Whittaker and Watson, Modern Analysis, 4th éd., p. 131. 



116 P. W. KETCHUM [February 

bo,n+l bi,n bn-i,2\ 
, ; ' * ' , ) . 

bo,n bitn-l bn-l,l / 

Using the above notation we shall now state the principal re­
sult of this paper. 

THEOREM 1. Let the above number R be such that 

(4) 0 < R < lim inf [bn>1 + Mn}~1, 

and such that 

(5) | Pn.m.kix) | ^ Q 

for x on the curves Cék), where Q is a positive number independent 
of n1 m, and k. Then iff(x) is analytic at the points ai, a^ • • • , av, 
it may be expanded in the simple series 

, N ƒ(*) = <xo,iFo,i(x)+ aot2F0t2(x) + • • • + a0,vF0tV(x) 
(6) 

+ oi1>1F1)1(x)+ a1>2Flt2(x) + • • • + ai)VF1>v(x) + • • • . 

This expansion will converge absolutely and uniformly to f(x) in 
and on the curves CV(fc) provided r^R cind r<p, where p is any 
number such that f (x) is analytic in and on every Cp

{k). There is 
moreover only one such expansion for f {x) which is uniformly con­
vergent in CRW , R'>0. 

There are numerous examples in the literature of expansions 
of functions analytic in distinct regions.* There are fewer in­
stances of expansions like those in Theorem 1, where an arbi­
trary function analytic at several points can be expanded in 
the neighborhood of these points in a set of functions independ­
ent of that neighborhood. The Jacobi polynomials f furnish the 
simplest example of such an expansion. Other examples have 
been given by Walsh | and, for the case of two points, by the 
writer. § Theorem 1 includes these previous expansions of the 
writer's. The relation with the Jacobi polynomials will be dis­
cussed in §3. In the case of a single point, *> = 1, Theorem 1 is a 

* J. L. Walsh, Interpolation and Approximation, Colloquium Publications 
of this Society, vol. 20, p. 128. 

t Alfred Kienast, Inaugural-Dissertation, Zurich (1906). 
t Op. cit., §§8.7 and 8.8. 
§ Annals of Mathematics, vol. 35 (1934), pp. 759-766. 

(3) Mn = max | 
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new generalization of Bürmann's series. For v = l, 6i(x) =x, it 
reduces to a theorem recently proved by Gertrude S. Ketchum 
which, in turn, includes numerous theorems of other writers.* 

In the above theorem, condition (4) is stated in terms of 
bounds on the coefficients c(™'s

k\ In some applications it is more 
convenient to have all the conditions stated in terms of a bound 
on the functions Pn,m,k(x). We therefore let Mn,ff be such that 

I « / N (m'k) I < -tr 

I -t n,m,k\X) Cn>o | ^ Mn><T 

for x in and on the curves Ca
(k). If h is the maximum length of 

the analytic curves Cff
(k), and Ta is the upper bound of | 6£ (x) | 

for x on Cfk) , then it is easily seen that 

| Cn,s | = A<rMnt(r(T % Ka = 
2w<r 

Substituting this condition in Theorem 1 we get immediately 
the following corollary. 

CoROLLARYf 1. The function f'(x) defined above may be expanded 
in one and only one series (6) which converges absolutely and uni-
formly in and on the curves C^k), where 0<R<p and 

R < cr{l + K.[<r(v - 1) + l ] lim sup Mn,,}"1. 

Theorem 1 and Corollary 1 become considerably simpler if 
we are interested only in the existence of the expansion in the 
neighborhood of the points ajc. We now state fully this special 
case as a second corollary. 

COROLLARY 2. Let f(x) be any f unction analytic at the distinct 
points ai,a2, • • • , av. Let Fn>m(x) be analytic in a set of regions Rk, 
(k = 1, 2, • • • , v), where Rk is independent of n and m and con­
tains au in its interior. Also let Fnim(x) have a zerodof order n at ah 

* Gertrude S. Ketchum, Transactions of this Society, vol. 40 (1936), p. 213. 
t This reduces for *> —1 and d\(x)~x to a theorem of Takenaka, Tokyo 

Physico-Mathematical Society Proceedings, (3), vol. 13 (1931), pp. 111-117. 
See also I. M. Sheffer, American Journal of Mathematics, vol. 57 (1935), pp. 
587-614. 
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if m — k and a zero of higher order than nif m^k. Suppose a f une-
Hon dk(x) exists such that (1) 6k(x) has a simple zero at ak, (2) 
limx^akFn,k(x) [dk(x) ]~n = l,and (3) | Fn>m(x) [8k(x) ] ~ n | is bounded 
in Ruby a constant Q independent of n,m, and k. Then there exists 
a unique set of numbers an,m such that the series in (6) converges 
absolutely and uniformly to f(x) in each of a set of regions Rk , 
(k = 1, 2, • • • , J>), where Rk contains ak in its interior. 

2. Proof of Theorem 1. Consider first the expansion of the par­
ticular functions fP(x), (p = 0, 1, • • • ), where 

(7) fp(x) = BPlk[ek(x)]p 

in some neighborhood of each of the points ak. The BP)k are con­
stants. Proceeding formally, writing Fn>m(x) in powers of 6k(x), 
and equating coefficients, we obtain the following recurrence 
relation on the coefficients of (6), which we shall call a^l : 

(8) 
a'P) = B 

{n = 0, 1, 

*-P,m 

(p) 
OLp-\-q,m 

p,m j 

(k,m) E ^-y (K,m) (P) 

? j CP+r,q— 1—r-\-8(k,m)Oip-\-r,k 

1), 

for g = 1,2, • • • . 
Let A(p2Q be a set of numbers defined by the relations 

(9) A? = 1 AP) _ V /, A(P) 

j -Ap+q / j DP+r,q—r^ P+r •> 
r=0 

Let dp be the largest of | Bm,P\ for m = 1, 2, • 
duction 

(10) 1 ap+qim 1 S 

for all values of m. Now 

A (p) 

Ap+q — 

bp,i — 1 

bp,2 bp+iti 

bp,q—l 6>p-4-i,g_2 

bP,q Dp+l,q—l 

, AP) 
ap^i P-\-q , 

0 • • 

- 1 • 

bp+2,q-3 ' ' 

bp+2,q-2 ' ' 

( ? = 1, 2, • • • ) . 

• • , v. Then by in-

(g = 0, 1, • - - ) , 

0 

0 

• - 1 

• 5 p + ç _ l , l 
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Let 

(p) ___ 
p+q * 

bP,i 

bP,2 

bp,q-l 

• bp>q 

1 

bp+i,i 

Up+l,q-2 

bp+l,q-l 

0 

1 

bp+2,q-3 ' 

Op+2,q-2 ' 

0 1 

0 

1 

• bp+q-i,i J 

where the bracketed expression is to be expanded like a deter­
minant except that all signs are to be taken positive. Then 

(p) (p) 
Up+q = AP+q-

we find that 

[ bp,i 1 

bp>2 bp+iti 

bp,q—2 bp+ltQ—3 

{ bPtq bp+l,q-l 

0 

1 

bp+2,q— 4 * * 

bp-\-2,q—2 ' 

0 

0 

1 

• bp+q-2,2 . 

}(p) 

n(p) - h n ( 2 , ) _L 
UP+q ~ Op+q-l.l-Lsp+q-l I" 

Hence 

, v Vp+q = flp+g-l.l^p+ç-l -\- Mp+q-iLJp+q„i, 
( 1 1 ) (p) 

£>2>+g ^ (Ô^+g-1,1 + Â f 2 J + g _ i ) ( Ô p + g _ 2 , l H" Mp+q-ï) 

{bp+iti + Mp+i)bPti. 

Now the series 

aP,iFPtl(x) + • • • + aP,pFp)V(x) + ap+ltiFp+1,i(x) + 
(12) 

is dominated by 

(13) 

(p) 
+ ap+i)VFp+1>v(x) + 

Q[(v - 1)R + l]dpR*>Z Dp+qRq, 

for x in and on the curves CR&K Substituting the bound (11) 
in (13) we get a series with the ratio of the (g + l)st to qth terms 
equal to (bp+Qti + Mp+q)R. From (4) it follows that for values of 
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£+<Z = ô> this ratio is less than \ < 1 . Hence (13) will converge 
for all p and for p ^ n0 has a sum less than 

(14) Q[(v- 1)R+ l](l-\)-idpRp. 

Thus for each p, the series (12) converges uniformly for x in 
and on CR{16). By an extension of the Weierstrass double series 
theorem we can rearrange the terms in powers of 0}c(x) and 
verify by means of the recurrence relations (8) that the sum 
of (12) isƒ*(*). 

Now consider the double series formed by summing (12) for 
p = 0, 1, 2, • • • . This double series converges absolutely if the 
series (14) summed over p converges. But this evidently hap­
pens if i£<lim inf dfllp, which in turn happens if R<p, which 
was part of our hypothesis. Hence, since this double series con­
verges absolutely, the terms may be arranged in a simple series 
so as to yield the expansion (6) of our theorem. 

3. Generalization of Expansions in Jacobi Polynomials. In 
this section we give an illustration of the application of our 
theory. We obtain a simple class of expansions which are gen­
eralizations of expansions in Jacobi polynomials. For simplicity 
we discuss only the question of the existence of the expansions. 

It will be shown that any function f (x) analytic at ai, • • • , av 

can be expanded in the series (6), where 

Fn,m{oc) = [(x — ai)(x — a2) * * • (% — ap)]
n+1(x — am)~lGn,m{x), 

the Gn,m(x) being any functions subject to the three conditions: 
(1) the Gn,m(x) are each analytic at au • • • , avy (2) Gn,m(am)5^0, 
(3) | Gn,m(x) | is bounded in some set of regions Rk about the points 
ah by a constant independent of n, m, and k. In particular, these 
conditions will be satisfied if Gn,m(^) = l, in which case the 
Fntm(x) reduce to the Jacobi polynomials. 

Without loss of generality we introduce certain normalizing 
constants and take Fnttn(x) to be 

[(x — ai)(x — a2)- - -(x — av)]
n+lGn,m(x) 

(am — ax) - • • (am — am-i) (x — am) (am — am+i) • • • (am — av)Gntm(am) 

We choose 

Oh(x) = (% — ax)(x — a2) • • • (x — av). 



1937-1 DUALISM IN ABELIAN GROUPS 121 

Then 

[dk(x)]n 

(x — ai) - • • (x — am-i)(x — am+i) • • • (x — av)Gn,m{x) 

(am — öi) • * • (am — am-l)(am ~ #m+l) ' * * (#m ~~ ^v)Gntm\dm) 

From this relation it is easily seen that all the conditions of 
Corollary 2 are satisfied, and our statement follows. 

UNIVERSITY OF ILLINOIS 

DUALISM IN ABELIAN GROUPS* 

BY REINHOLD BAER 

It has been proved f that a finite Abelian group contains as 
many subgroups of a given order n as it contains factor groups 
of order n ( = subgroups of index n) and E. SteinitzJ knew that 
a finite Abelian group contains as many subgroups of a given 
structure n as it contains factor groups of structure n. It is the 
aim of this note to prove that such a dualism exists in the 
Abelian group G if, and only if, G is a group without elements 
of infinite order whose primary components are finite. This is 
remarkable as an exception to the rule that every proposition 
which is satisfied in finite Abelian groups holds also true in 
every primary Abelian group such that the orders of its elements 
are bounded. 

Let G and G' be two (additively written Abelian) groups. 
Then the function d is a dualism of G upon G' if it has the 
following properties : 

(1) d is defined for every subgroup 5 of G and Sd is a uniquely 
determined subgroup of G' ; 

(2) to every subgroup S' of G' there exists a subgroup S of 
G such that Sd = S'; 

(3) S^ T(£G) if, and only if, Td^Sd(^G'); 

* Presented to the Society, October 31, 1936. 
f Garrett Birkhoff, Subgroups of Abelian groups, Proceedings of the London 

Mathematical Society, (2), vol. 38 (1934), pp. 385-401. 
% E. Steinitz, Jahresberichte der Deutschen Mathematiker-Vereinigung, 

vol. 9 (1901), pp. 80-85. 


