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mediate functions and (2) the roots of yn* = 0. In the second set the 
contribution due to (1) persists. By the introduction of the ad­
ditional functions in the second set, the change contributed by a 
root of yn> = 0 in the first set is transferred to a root of yn" = 0 
in the second set. Also no change arises for a root of yn' — 0, 
3V+i = 0, • • • , 3 V - i = 0 . Since the total number of losses is the 
same in the two cases, the conclusion will be that the number of 
roots for 3 V = 0 and 3 V = 0 in the range (— oo, a) will be the 
same; similarly for the range (b, oo). Also in (a, b) the num­
bers of roots of 3V = 0 and yn" = 0 are n' — p — q and n" — p — q. 
Hence we conclude that the number of imaginary roots of 
3V = 0 and yn" = 0 will be the same for nn>n'^nQ. 
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The nth derivative of a function/(x) may be defined without 
the use of derivatives of lower order by means of the limit of a 
certain quotient. Conditions necessary and sufficient for the 
existence and continuity of/ ( n )(x) at a point x — a and also for 
the mere existence of f(n)(a) have been recently given by Frank­
lin.* The purpose of the present note is to state necessary and 
sufficient conditions of a somewhat more general form with 
proofs which use only Rolle's theorem and elementary proper­
ties of determinants. 

Let ƒ»•(#) and0»(V), (i = l , 2 , • • • , w + l ) , be functions possess­
ing derivatives of the ^th order, continuous in an interval / . 
Let Xi, x2, • • • , xn+i be points of I which close down in an arbi­
trary manner on a point a, in the sense that 

(1) | %j — a | < e*., lim €k = 0. 
k—>oo 

We shall use the notation 

* This Bulletin, vol. 41 (1935), p. 573. 
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/ 0v D I /iO/) /2(«/) * * * /»+i(*/) I 
\*) *>n,k = -1 ;—: ;—: ; — ~ r > 

in which numerator and denominator are determinants of which 
only the j t h row of each is written. The following theorem* re­
quires for its proof only a repeated use of Rolle's theorem 

l / l t t l ) ' • • /n+lfe) I 

fl (£n+l) ' * * /n+l( fn+l) 

0 l (£ l ) * * * <Ên+l(£l) 

01 (£2) * ' ' ^n+lfe) 

1 01 (£n+l) ' * ' <£n+l(£n+l) I 

where £1 = Xi and £2, * * • , £n+i lie between the extreme points of 
Xj. If the points Xj close down in any manner on a point a of I , 
then £/—>&, (j = l, 2, • • • , w + 1), and on account of the con­
tinuity of the derivatives we have the following theorem. 

THEOREM 1. If the points x3- close down on a in an arbitrary 
manner subject to (1) and W{<t>u $2, ' ' ' » 0n+i) ^ 0 at the point a, 
where W denotes the Wronskian of the functions indicated, then 
Bn,k has a unique limit 

(4) lim Bn>k = — -

Conversely, however, it is not true that if Bn,k has a unique 
limit for any approach of the points to a, then the derivatives 
involved in the Wronskians all exist. If, for example, ƒ,•=<£ƒ, 
(J = 1, 2, • • • , w + 1), then 5 , ^ = 1 and lim Bn,k = 1 for any ap-

* Pólya and Szegö, Aufgaben und Lehrsdtze, vol. 2, p. 54. The theorem in a 
slightly less general form was given by Schwarz, Annali di Matematica, (2), 
vol. 10 (1880), p. 129; Collected Works, vol. 2, p. 296. A proof based on 
Rolle's theorem was given by Stieltjes, Nouvelles Annales de Mathématique, 
(3), vol. 7 (1888), p. 26; Collected Works, p. 105. See also Miller, Transactions 
of the Royal Society of Canada, 1931, p. 195. 
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proach, even though the functions be non-difïerentiable. If, 
however, all the functions but one, say fi(x), possess nth deriva­
tives continuous at a and are subject to certain further restric­
tions stated below, the existence of a unique limit for Bntk as 
the points Xj close down on a in an arbitrary manner* furnishes 
a sufficient condition for the existence and continuity of /i (n ) (x) 
zXx — a. If the restriction be made that one of the points Xj re­
main at a while the others approach a in any manner, the exist­
ence of lim Bn,k in this case suffices to ensure the existence of 
/i(w) (a) without the continuity of the derivative at this point. 
This latter theorem will first be proved. 

THEOREM 2. Hypotheses: (i) In an interval I containing the 
point a the n functions f i, {i — 2, 3, • • • , n + 1), are linearly inde­
pendent in every subinterval and possess derivatives of the nth order, 
(ii) the functions </>;, (i = 1 , 2 , 3 , • • • , w + 1), possess derivatives of 
the nth order, (iii) Bn,k possesses a unique limit as the point xi re­
mains at a while the points X2, • • • , xn+i close down on a in an 
arbitrary manner, (iv) W{f2, f%, • • • ,/n+i) ^0 at the point a. Then 
f i also possesses a derivative of the nth order atx = a and the deriva­
tives of fi satisfy the relation (4). 

We prove first the existence of f{ (a). For this purpose set 
Xi = a and replace the elements of the second row of the numera­
tor of (2) by [fj(x2)-fj(a)]/(x2-a), (j=l, 2, • • • , n + 1), with 
a similar replacement in the second row of the denominator. 
Now, leaving X 3 , , Xfi +i fixed, let x2—>a. By hypothesis 

* Since the denominator of Bn>k vanishes whenever two or more of the 
points XJ coincide, the quotient is not defined at such points. The hypothesis 
here stated shall be understood to require that the discontinuities at all such 
points be removable. Tha t is, if in a sufficiently small neighbourhood of a 
some of the points Xj remain fixed while the remainder approach a point (either 
a or a,\ near a) in an arbitrary manner, the limit of Bn,k must exist. The follow­
ing example is instructive. On the parabola y = x2 take a set of points whose 
abscissas are 1, 1/2, 1/4, 1/8, • • • . Join successive points of this sequence by 
chords, forming a broken line curve, to which the limiting point (0, 0) is ad­
joined. Call f(x) the function represented by this broken line curve. It has 
the property tha t limXl^0f a^oLffe*)—f(xi)]/(x2—#i)=0 for x 2 ^ x i , also 
lim*^JimXrKtl \f(x2) -ƒ(#]) ]/(x2 —xi) = 0 and l i m ^ o u m * ^ \fM ~f(x1)]/(x2-xi) 
= 0. But l i m ^ o , *2-o [/fe) —f(xi)]/(x2—xi) does not exist in the sense in which 
we are using the term, since the quotient has irremovable discontinuities at a 
set of points condensing on the origin. 
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(iii) Bn,k must then approach a limit (if Xz, * * * > #n+i are close 
enough to a). Also lim [fj(x2) — ƒ?(#)]/(x2 — a) =ƒ/ (a) for j V l 
and lim [</>y(x2) — 0/(a)]/(x2 —a) = 0 / ( a ) for j = l, 2, • • • , w + 1. 
The only element whose limit is in doubt is [fi (x2) —fi (a) ]/ (x2 — a). 
It will follow that this element approaches a limit and therefore 
t h a t / / (a) exists as soon as we show that its cofactor in the nu­
merator is not zero. This cof actor is, except for sign, 

C12 = 

Ma) 
Mx*) 
Mx*) 

ƒ.(*) 

/sOs) 

ƒ3 o<0 

• ' fn+i(a) 

' ' fn+l(%3) 

' ' fn+l(%i) 

MXn+l) MXn+l) fn+l(%n+l) 

The elements of the first row are not all zero, by hypothesis 
(iv). In any subinterval of / a point #3 exists such that not all 
the two-rowed minors of the first two rows are zero, for if not 
the n functions would be linearly dependent in this subinterval. 
Let such a point x3 be chosen. Then in any subinterval of / , x4 

may be chosen such that not all the three-rowed minors of the 
first three rows are zero, and so on. Finally, 
may be chosen in an infinite variety of ways such that Cn^O. 
The existence of// (a) is then established. 

Proceeding now by induction suppose that fi{r)(a) exists. In 
order to show the existence of fi(r+1)(a) we first transform Bn,k 
in the manner in which (3) is obtained but without carrying the 
transformation so far. Consider 

/ iOi ) M'< *i) • ' 

Mx*) Mx*) 

/ lOn+l ) MXn+l) ' ' 

— BHfk 

</>iOi) 

01O2) 

• /n+lOl) 

' fn+l(0C2) 

' fn+l(Xn+l) 

02Ol) 

02(>2) 

' <t>n+l(Xl) 

• 4>n+l(%2) 

(5) 

<t>l(xn+l) </>2(#n+l) * ' * $ n + l ( # n + l ) I 

Replace xn+i by x. The resulting function of x vanishes at 
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x = xn+i and at* x = xn. Hence its derivative vanishes at #w+i, 
between xn and xn+\. In the last rows of (5) we may replace 
fj(xn+1) b y / / On+i) and <fo(xn+i) by 0 / (x'n+i), so that the result­
ing expression vanishes. By a similar operation we may re­
place the elements of the second last rows by derivatives and xn 

by Xn which is between xn_i and xn. This may be repeated until 
all the elements except those of the first rows have been re­
placed by derivatives, the resulting expression being zero. Be­
ginning again at the last rows replace xn+i by x. The resulting 
function of x vanishes at x„+i and at xn' • An application of 
Rolle's theorem leads to the substitution of second derivatives in 
the last rows, and of x"+i for xw+i, where x"+i is between xn' and 
x'n+i. Repetitions of the operation will replace by second deriva­
tives all the elements of the rows beginning with the third. In a 
similar manner we replace by third derivatives all the elements 
of the rows beginning with the fourth. Continuing this process 
until we arrive at rih derivatives, we get for Bntk a quotient of 
which the numerator is 

1 ZiOn) 

IflM 

fl (Vr+l) 

fl (Vr+2) 

i fl (Vn+l) 

fib*) 

f2 (Vr+l) * 

h (r)r+2) ' 

f2 (Vn+l) * 

' * fn+l(vi) 

' * fn+l(V2) 

' ' fn+liVr+l) 

' ' fn+l(Vr+2) 

' ' fn+liVn+l) 

and the denominator is a similar expression with <j> replacing/, 
where r]i = Xi, rj2 is between Xi and x2, 773 is between the extremes 
of Xi, X2, and x3, and so on. 

We now make use of the resulting expression for Bn>k as fol­
lows. Let Xi = X2= • • * =xr+i = a. Then 771 = 772= ' * * —Vr+i — a. 
In (6) replace//r)(77r+2) by 

mv^-fM*)t 0 .= 1 > 2 > . . . i n + 1 ) i 
rjr+2 — a 

* For the deduction of the result which follows, the points Xj are taken 
distinct. When, in the result, some of the points are made to coincide, it is the 
limit of Bn,k which is used. 
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with similar replacements in the ( r+2 ) th row of the denomi­
nator of Bntk. Thus (6) becomes 

(7) 

Ma) 
f I (a) 

fi (Vr+2) - fi (a) 

fl (Vr+s) 

fl (l7n+l) 

Ma) • 
f 4 (a) • 

h (a) • 

Z«+I(Ö) 

fn+i(a) 

Jn+\(a) 

fnMvr+2) — fn+i(a) 
7jr+2 — a 

' ' fn+liVr+z) 

* ' fn+l(Vn+l) 

Let xr+2~•»#. Then 7)r+2~>a. The ratio of which (7) is the nu­
merator approaches a limit by hypothesis (iii). The only element 
in numerator or denominator whose limit is in doubt is 
[fi(r)(yr+2)—fi(r)(a)]/(r]r+2 — a). Consider the cofactor of this 
element in (7), 

fn+i(a) 

fnMa) 

(8) 

Ma) 

f 4 (a) 

h (wi ) /n+lOïn+l) 

Not all the (r+1)-rowed minors of the first r + 1 rows of (8) 
vanish, by hypothesis (iv). If it should happen that all the 
(r+2)-rowed minors of the first r + 2 rows are zero, then a 
slight change in xr+z will cause a change in rjr+z and will lead 
to (r+2)-rowed minors not all of which are zero, on ac­
count of hypothesis (i). Similarly, xr+3, • • • , xn+i may be 
chosen in an infinite variety of ways so that (8) is not zero. 
Hence limVr+2^a[ f^^rj r+2) - f^\a)]/(Vr+2--a) or f^^(a) exists. 
This completes the induction and establishes Theorem 2. 

In order that the derivative ƒ(n) (x) be continuous at x = a the 
hypotheses must be made slightly more stringent. The theorem 
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is suggested by the corresponding theorem of Franklin already 
referred to and the proof makes use of a device which he intro­
duced. 

THEOREM 3. The hypotheses of Theorem 2 are postulated, with 
the following modifications. In (i) and (ii) the nth derivatives of 
f2, - • • , fn+i, 0i, • • • , 0w+i shall be continuous, (iii) becomes: Bn,k 
possesses a unique limit as the points xi, x%, • • • , xn+i close down 
on a in an arbitrary manner. The conclusion is that / i ( n ) (x) exists 
and is continuous at x = a. 

For the proof the existence of// (a) follows from Theorem 2. 
Take au a point neighboring to a. Let x± — a\ and let x%, • • • , xn+i 
approach a± and then let «i approach a. Since Bn,k has the 
same limit for every approach of the points to a, and since the 
derivatives of the functions other t h a n / i are continuous, it fol­
lows that Iimai^a\imx^ai[fi(x2)-f1(a1)]/(x2-ai)=fi (a), which 
proves the continuity of// (x) at a. In the same way the exist­
ence proof for /i ( r+1)(a) may be modified, with the hypotheses 
now available, to include the proof of the continuity of this 
derivative. Hence the induction for this case is also complete. 

PARTICULAR CASES. Setf2(x) =xn~1, • • • ,fn(x) =x,fn+i(x) = 1 ; 
</>i(x) =xn, 020*0 =xn~1, • • , <j>n+i{x) = 1 and denote Bn,k for this 
case by A n, &. Under the hypothesis of a unique limit for A n,& we 
have,* dropping the subscript of ƒ2(re), lim^^^An^—f^io)/^ 
and f{n)(a) —n\ X\mh^An,h. Here the mere existence of/ (w)(a) 
follows or the existence and continuity of ƒ(w) (x) a t x = a ac­
cording as the method of approach of the points to a is that 
specified in Theorem 2 or in Theorem 3. 

Again set f2(x) —xn~l, • • , fn(%) =x, fn+i(x) = 1. Under the 
pertinent hypotheses the expression for f(n)(a) is, in this case, 

sr w x / «N W(4>19 ' ' ' , 0n+l) . . „ 

f M (a) = ( - l ) n lim Bn,k, 
J (n- \)\(n- 2)!- • • 2!1! *-• 

the value of the Wronskian being taken at the point a. 
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* Franklin, loc. cit. 


