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A M I X T U R E T H E O R E M FOR NONCONSERVATIVE 
MECHANICAL SYSTEMS* 

BY A. H. COPELANDf 

We shall be concerned with a mechanical system which is 
acted upon by friction in such a manner that it eventually comes 
to rest. We shall assume that there is a probability distribution 
for the initial conditions of the system. There is then deter­
mined a corresponding distribution for the rest position. We 
shall show that in general as the friction approaches zero, this 
latter distribution approaches uniformity irrespective of the 
initial distribution. This type of problem was first solved by 
Poincaré.J The theory was later developed by Smoluchowski§ 
and recently an extensive contribution based on the ergodic 
theorem || has been made by Hopf.^ 

We shall let Xi, #2, • • • , xv denote the position coordinates 
of the system at any time / and shall let x denote the vector 

Thus dx/dt is the velocity vector. The initial 
position will be denoted by the vector B and the initial velocity 
by the vector V, Then V, B can be any point of 2^-dimensional 
space 12. We assume that there exists a continuous function \f/ 
such that the probability of the initial conditions being repre­
sented by a point V, B in a given region S is equal to the in­
tegral of \p taken over S. This condition is expressed by the 
equation 

(1) prob [(F, B)eS] = f iK7, B)dœ. 
J s 

* Presented to the Society, December 27, 1934. 
f Guggenheim fellow. 
î Calcul des Probabilités, 1912. 
§ Über den Begriff des Zufalls und den Ursprung der Wahrscheinlich-

keitsgesetze in der Physik, Die Naturwissenschaften, vol. 6 (1918). 
|| Birkhoff, Proof of a recurrence theorem for strongly transitive systems, 

Proof of the ergodic theorem, Proceedings of the National Academy of Sciences, 
vol. 17 (1931). 

If On causality, statistics, and probability, Journal of Mathematics and 
Physics, Massachusetts Institute of Technology, vol. 13 (1934). See also 
Struik, On the foundations of the theory of probability, Philosophy of Science, 
vol. 1 (1934). 
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Since \f/ is a distribution function, it must satisfy the relation 

(2) f \p (V ,B)dœ= 1. 
J ü 

Otherwise \f/ will be unrestricted. 
We shall assume that the coordinates &i, #2, • • • , a>v of the 

rest position are angular variables. That is, we shall be inter­
ested in the values of these variables reduced by some modulus. 
By a proper choice of units, we can make this modulus equal to 
1. Thus we shall study the probability distribution for the vector 
a— [a] whose components are a,\— [ a j , a2— [a2], • • • , av— [a„], 
where [a*] is the largest integer contained in a*. The vector 
a— [a] lies in the region A given by the inequalities 0 ^ J S » - < 1 , 

where i = l, 2, • • • , v. The probability distribution of a— [a] 
will be called uniform if for every region £ of A, we have the 
equation 

(3) prob(a - [a]eE) = rn{E), 

where m(E) is the ^-dimensional Lebesgue measure of E. The 
region E may be any set whose frontier points constitute a set 
of measure 0. Our problem is to show that this uniform distribu­
tion is approached as the friction is decreased. 

We shall first consider a system defined by the equation 

d2x /dx\ 
(4) * - -A*)-
where /x is a scalar parameter. If we substitute x=B+^/fx and 
/ = r//x, then we observe that dx/dt — d^/dr and d2x/dt2=ixd2^/dr2. 
Hence 

d2£ /d£\ 

We can obtain a solution £ = X ( F , r ) , d^/dr = X(V, r) such that 
X(V, 0) = 0 and X(V, 0) = V. After a time T, the system (5) 
comes to rest. Thus X(V, T)=A and X(V, T)=0, where A 
is the rest position vector. If we solve one of the equations 
X(V, T) = 0 for T in terms of V and substitute this value in 
the equations X(V, T)—A, we obtain the relations A = F(V) 
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and V= F~l(A). We shall assume that system (4) (or (5)) is such 
that the Jacobian / (£ ) is continuous and non-vanishing. Then 

(6) f iKK, B)dœ = f 4>(A, B)da = prob [(A, B)eR], 
J S J R 

where <j)(A, B) =\p[F~1(A), B]-j(J) and R is the transformed 
region 5. 

I t will be observed that x = B+X(V, \xt)/\x, dx/dt = X(V, fit) 
is the solution of system (4) whose initial conditions are repre­
sented by the point V, B of the phase space 0. The rest position 
of this system is the vector a — B-\-A/\x. In order to study the 
distribution of a— [a], we shall introduce a vector b — —B/JJL+A 
and two systems of regions 

rm,n' m + a^a<m + P, n ^ b < n + 1, 
(7) 

Rm,n' m ^ a < m + 1, n ^ b < n + 1, 
where m and n stand respectively for the sets of integers 
mi, W2, • • • , mv and Wi, W2, • • • , nv. Then the set of all points 
A, B for which a^a—[a] </3 is2^w,nrm>w, where the summation 
is extended over integral values of mi, W2, • • • , w„ «i,»2, * • • , #„. 
Hence 

prob (a ^ a — [a] < jo) = X) prob [(4, £)erm,n] 

(8) 

4>(A,B)dcr. 
m..n ** r~~ 

The set of all points A, B is the region T =^m , n^m,n. 
We shall apply the mean value theorem to evaluate the in­

tegrals occurring in this latter summation. To accomplish this, 
it will be necessary to compute the volumes of the regions rm,n. 
An equation bi = — Bi/fi+Ai, where &»• is a constant, represents 
a line in the AiBi plane. If 0 is the angle between such a line 
and the positive Ai axis, then tan 0=/x. In a similar manner, 
an equation ai=Bi+Ai//jLi where a,- is a constant, is a line with 
slope — 1/fi. Hence the two inequalities w,- + «»• ̂  a» < w» + j0«, 
»» ^ ô* < w,- + 1, determine a rectangle whose area is 

(Pi - ai) • sin2 6 = (pi- ai) (—Y 
\1 + M2/ 
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It follows that the volume of rm.n is 

Ê<*->-(jh)'-
In a similar manner it can be seen that the volume of Rm,n is 
[ju2/(l+M2)h It follows from the mean value theorem that 

prob (a ^ a - [a] < j6) 

— — " / M2 V 
= S </>Utn.n, Bm.n) U (Pi - «i) ( —j ") 

m,n t-1 M + M / 

= I I (Pi - oii)J2(t>(Am,n, Bm,n)l-—~—), 
v=*l m,n \ t r" M / 

where A m,ni Bm,n is a properly chosen point of the region ?m,n< 
Since A is also a point of Rm,n and since [/x2/(l -\-JJL2) ]" is 
the volume of this region, it follows from the definition of the 
definite integral that 

lim prob (a S a - [a] < 0) = Jl (Pi - a%) I 0(4, B)da 
M-+O i==i J r 

(10) 
v 

= n (&-«<)• 
Thus we have proved that 

(11) lim prob (a — [a]eE) = m{E), 

if £ is the rectangular domain a^z<p. I t remains to show that 
equation (11) holds for any set E whose frontier points are of 
measure 0. Corresponding to any such set and to any given posi­
tive number e, there exist two sets E\ and E2 such that each con­
sists of a finite sum of rectangular regions, that Ei<E <E2, and 
that m(Ei — E2) <€.* Hence it is easily seen that equation (11) 
holds for such sets. 

Next we shall consider any mechanical system defined by 
second order differential equations involving a parameter JJL. 

* For a proof of this statement, see the author 's article Admissible numbers 
in the theory of geometrical probability, American Journal of Mathematics, vol. 
53 (1931). 

file://-/-jjl2
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The solution of these equations has the form x = X(V, B, t, /x), 
dx/dt = X(V, B, t, /*), where X(V, B, 0, jx) =B and £(V, B, 0, /x) 
= V. We shall suppose that after a time T the system comes to 
rest. Thus X(V, B, T,p)=a and £(V, B, T, /x) =0 . Solving one 
of the equations X(V, B, T, /JL) = 0 for T and substituting this 
value in the function X(V, B, t, /x), we obtain the relations 
a = F(V, B, M) and F=JF~1(«, -B, /x). We shall suppose that the 
differential system is such that the limit as /x approaches 0 of 
IJL-F(V, B, /x) exists and is not equal to 0. It is then natural to 
make the substitution u = afx=/jiF(V} B} /x) =f(V, 5 , /x). We shall 
let A=F(V, B, 1) and hence V=F~l(A, B, 1). Substituting 
this value of V in the function F(V, B, /x), we obtain the rela­
tions a = G(A, B} /x) and u=g(A, B, /x). We shall define a sec­
ond system of equations v = h(A, B, /x) and shall assume that 
the functions h can be so determined that the partial derivatives 
dAi/dUj, dAi/dvj, dBi/duj, dBi/dvj are bounded and uniformly 
continuous throughout the range of the points u, v and for all 
values of /x in the interval 0 ^ / x ^ l . Then / ( « / ? ) is bounded 
and uniformly continuous. We shall assume also that this Jaco-
bian is non-vanishing. 

We shall again define two systems of regions 

rm,n'' n(tn + a) ^ u < \x{m + 0), [in <J v < M O + 1), 

Rm,n' ixm S u < n(m + 1), fin ^ v < ix{n + 1). 

The diameters of Rm,n and rm,n (considered as regions of the 
space T) approach 0 with /x. We have the equation 

(13) 

prob (a ^ a - [a] < 0) = ] £ I 0(4 , £)J<r 

( A B \ v 

.' . ) n (a - «<)/*-*, 
where 0(^4, £ ) =^[JF

_1(^4, J3, 1), £ ] • / ( £ ) and wm,n, zJm>n is a 
properly chosen point of the region rm,n- Equation (13) can also 
be written in the form 

prob (a ^ a — [a] < fi) 

(14) v _ _ /A, B \ 
= I I (Pi - <Xi)J2<t>(Am,n,Bmtn)jl J _, U-2v(l + €w,n), 

*=1 mtn \ ^ m , n j ^m,n/ 
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(A: I > -where T 

\/M,m,n) ' 

is the volume of i?m,n and €m,n approaches 0 uniformly with JU. 
Therefore 

lim prob (a ^ a - [a] < p) = f[ (ft - a%) I 0(4 , B)d<r 

(15) ^ 

= n (&-«<)• 
I t follows that 

(16) lim prob (a - [a]€E) = m(E) 

for every set E whose frontier points are of measure 0. Thus the 
distribution of a— [a] approaches uniformity as the parameter 
jit approaches 0. 

We shall consider two simple extensions of this theory. We 
may be concerned with problems involving only X of the co­
ordinates of the rest position where X O . In this case it is only 
necessary to observe that any sub-set of the sub-space of X di­
mensions is also a sub-set of the space A and that if the frontier 
points of such a set are of measure 0 with respect to the sub-
space, they are also of measure 0 with respect to A. Hence a 
uniform distribution is approached in the sub-space. 

Suppose that we make a series of n experiments with a me­
chanical system and that the initial conditions for these experi­
ments are dependent. We shall inquire the limiting value of the 
probability that the rest positions of the 1st, 2nd, • • • , nth. ex­
periments will fall respectively in the sets Ei, E^ • • • , En. This 
problem is essentially the same as those previously considered. 
Thus we have a system of nv second order differential equations 
obtained by repeating the v equations n times. We have a corre­
sponding distribution function for the initial conditions which 
is defined throughout a phase space of 2nv dimensions. It follows 
that the probability in question is m (Ei) • m (E2) • • • tn(En). 
Hence in the limit we have independence with respect to the rest 
positions even though we had dependence in the initial condi­
tions. 
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