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SIMILARITY OF MATRICES IN WHICH T H E 
E L E M E N T S ARE REAL QUATERNIONS* 

BY LOUISE A. WOLF 

1. Introduction. The purpose of this paper is to give a neces­
sary and sufficient condition that for two matrices, A and B, 
of which the elements are real quaternions, there exist a non-
singular matrix 5 whose elements are real quaternions such that 
SAS~1 = B. The matrices A and B are said to be similar if such 
a matrix S exists. This paper defines a set of invariant factors 
for any such matrix, A, in terms of the ranks of certain real poly­
nomials in A. 

2. Definitions and Notations. If A represents a matrix having 
m rows and n columns, then A ' (read A transpose) is the matrix 
A with the rows and columns interchanged so that A' has n 
rows and m columns. 

According to E. H. Moore a set of k vectors rji, each being a 
matrix having n rows and one column, where rji = (yn, y^, • • • , 
yin) f (i = l, 2, • • • , k), whose elements y a are real quaternions, 
is left linearly dependent with respect to real quaternions if 
there exists a set of constants g», which are real quaternions and 
not all zero such thatX^]=1^3 ,û ,==0» U = 1> 2, • • • , n). If no such 
set of real quaternions, gt-, exists except g* = 0, the vectors rji 
are said to be left linearly independent. Similarly the k vectors 
rji are right linearly dependent with respect to real quaternions 
if there exists a set of constants, qi, which are real quaternions 
and not all zero, such that l[l._1yiiQi = 0, ( i = l , 2, • • • , n). If 
no such set of real quaternions, g*, exists except g» = 0, the vec­
tors rji are said to be right linearly independent. 

Moore considered the columns of a matrix, whose elements 
are real quaternions, as vectors and defined the rank, r, of such 
a matrix, 5, as the maximum number of columns of S which are 
right linearly independent with respect to real quaternions. He 
proved that if a matrix S is of rank r, then r is also the maximum 
number of rows of S that are left linearly independent with 

* Presented to the Society, September 13, 1935, 
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respect to real quaternions. He further defined a matrix S to 
be non-singular if the rank equals the order and proved that for 
every non-singular matrix S there exists a matrix 5 _ 1 such that 

s-is=ss~i=i. 
3. A Correspondence. The algebra of complex quaternions is 

equivalent to the total complex matric algebra of order 4.* A 
matrix QA corresponds to a matrix A, aA~A, where the elements 
of A are real quaternions, if aA is obtained from A by the re­
placement of each element of A by a 2X2 matrix obtained from 
the relations as given by Dickson. The elements of <iA are in 
the complex field and QA is of order 2n if A is of order n. 

In the following theorems and definition A is a matrix in 
which the elements are real quaternions. The minimum func­
tion of A in the field of real numbers, R, is the polynomial of 
lowest degree, g(X), in which the coefficients are real and the 
leading coefficient unity such that g(A)=0. The following 
theorems can readily be established.f 

THEOREM 1. The minimum function of A in the field R is 
unique. 

THEOREM 2. If<zA~Ay then the minimum f unction of A in R 
is also the minimum f unction ofzAin R. 

THEOREM 3. If A is non-singular, then aA is non-singular and 
conversely. 

THEOREM 4. A necessary and sufficient condition that A which 
corresponds to <A be similar to B which corresponds to <B is that 
there exist a non-singular matrix S with elements in the complex 
field such that Sc^fS - 1 = #. 

4. A Special Type of Matrix with Elements in the Complex 
Field. If <A is a matrix obtained from A by the replacement of 
the real quaternionic elements of A by 2X2 matrices by means 
of the correspondence of § 3, then zA has the following proper­
ties. 

* See L. E. Dickson, Linear Algebras, p. 13. 
t The proofs omitted in this article may be found in a thesis for the doc­

torate which is on file under the same title at the University of Wisconsin 
Library. 
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THEOREM 5. The determinant ofaAis real. 

THEOREM 6. The determinants of the kXk minors of (oA—\I) 
are real or occur in pairs that are either conjugates of one another or 
negative conjugates. 

THEOREM 7. The invariant f actors of (QA—\I) are real. 

5. A Comparison of the Ranks of A and aA. The statements 
given in this paragraph concerning the rank of matrices with 
quaternionic elements are taken from the Lectures of E. H. 
Moore: The vectors 77», where 77/ *= (5a, 5t-2, • • • , S»-n)> (i = l, 2, 
• • • , n), and where 5?i = 0 for j?*i and on — 1, form a base with 

respect to quaternionic coefficients for the vector space of which 
77 is an element, where 77'= (qu q2l • • • , qn), and where the qi 
are real quaternions. If a set of k vectors, such as 77;, where 
rji =(<Za, Qa, • • • » Qin), (i = l, 2, • • • , & ) , is right linearly in­
dependent with respect to real quaternions, it is always possible 
to complete the base for the vector space by adding n — k right 
linearly independent vectors such that all n vectors are right 
linearly independent with respect to real quaternions. The rank 
of a matrix A whose elements are real quaternions is n — s if s 
is the maximum number of right linearly independent vectors 
77; such that .̂77̂  = 0, (i = l, 2, • • • , s). 

In considering the rank of the matrix oA which corresponds to 
the matrix A, it is convenient to consider the columns of these 
matrices as vectors. Let A =(77!, 772, • • • , rjn), where 77/ =(g*-i, 
q%2, ' \' * Qin) and qji^qno+qjiii+qjiri+Qwk-

If QA~A, then aA= ( & , & , • • • , £2n-i,fen), where rç$-~(fe<_i,fe<) 
and the elements of fe are in the complex field C. 

THEOREM 8. If the rank of A is k, then the rank ofaAis 2k. 

If A is of order n, then aA is of order In. Suppose that the 
rank of A is n, then A is non-singular a n d e ^ i s also non-singular 
due to the equivalence and hence zA is of rank In. If A is of rank 
zero, 77t = 0 and hence fes=0 and QA^O. Therefore zA is of rank 
zero. 

Suppose A is of rank k, where 0<k<n, then the following 
consideration shows that QA is at least of rank 2k. Take k right 
linearly independent columns of A and designate them as 
771, 772, • • • , 77*. Take fe, fe, • • • , fe*-i, fe& of oA so that 77* 
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~(?2*-i, £ 2»)« Complete a base for the vector space rji by adding 
Vk+i, • - • , rjn to 771, 772, • • • , rjk> Let £2*4-1» £2/4-2, • • • , £2n-i, £271 be 
the vectors that correspond to 77*4-1, • • • , rjn- Then B = (rji, • • • , 
Vk> Vk+i, • - - y Vn) and © = (£1, £2, • • • , £2^-1, £2A, £2*4-1» £2/4-2, • • • , 
£2n-i, £2n) are both non-singular matrices. B is non-singular by 
construction and fà^B. Thus 43 is of rank 2n and £1, £2, • • • , 
£2^-1, £2/0 are linearly independent. But £1, £2, • • • , £2/̂ -1, £2* are 
columns of aA and hence aA has at least 2k linearly independent 
columns and the rank of oA is equal to or greater than 2k. 

We can also prove as follows that the rank of zA is equal to 
or less than 2k. Suppose A is of rank k = n — r, where r<n. 
Then there exist r right linearly independent vectors 77^0 such 
that 4̂77t = 0, (i = l, 2, • • • , r). Because of the correspondence 
there are 2r right linearly independent vectors £1, £2, • • • , 
£2r-i, £2r such that we have <^£ t =0, (i = l, 2, • • • , 2r), where 
7̂*'—'(Ç2*—1, £21),(̂ ' = 1, 2, • • • , r). The linear independence of the 

2r vectors, £», was established in the first part of the proof of 
this theorem. But if 2r linearly independent vectors, £t-, exist 
such that cyf£4- = 0, then the rank of <tA is less than or equal to 
2n — 2r; that is, the rank of ?A is less than or equal to 2k. Hence 
the rank of zA is 2k if the rank of A is k. 

6. Similarity of Matrices Whose Elements Are Real Quater­
nions in Terms of Invariant Factors of These Matrices. The 
matrix oA, which corresponds to A of order n, is a matrix of 
order 2n with elements in the complex field, C. The irreducible 
factors of \oA—\l\ are of the form (X —a,), where the a3- are in 
C. If Tij is the rank of (aA—ail)3' and ri0 = 2n, it can be seen from 
the classical canonical form for aA that rg = 2n — X^jfo^» 
where t^l) is the number of invariant factors that contain 
(X—ai)1. The set of positive integers ri0 — r»iè*\-i — r<2è^2 
—•^•3^ • • • is monotonie non-increasing. If ^,- = rt7_i — 2r^ 
+r,7+ i , then (X —c^V' appears among the elementary divisors of 
(QA—\I) a number of times equal to e^ and the first invariant 
factor is obtained by taking the product of the highest powers 
of ÇK — cti) which appear among the elementary divisors; the 
second invariant factor is obtained by taking the product of the 
second highest powers (X —a»), and so on. 

A second method of defining the invariant factors of (zA—\I) 
will be given which uses the fact that all the invariant factors 
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of ($A-\I) are in the real field, R. Let /i(X), /2(X), • • • , fk(\) 
be the irreducible factors of \<zA—X/| =/(X) in R. Let «/,•/ be the 
rank of [fi(^)V and wi0 = 2n. 

I t can easily be established that Wii = 2n-~^TJl^liiiti
{l)

1 where 
Hi is the degree of /»(X) and ti{l) is the number of invariant 
factors of (zA—\I) that are divisible by [fi(K)]l

f where the 
invariant factors of {zA—\I) are defined in terms of the ele­
mentary divisors in the conventional manner. I t was previously 
proved that /(X) is in the real field and hence the irreducible 
factors fiÇK) of /(X) in R are either linear or quadratic. The 
two cases are considered separately as follows : 

Case 1. Suppose /JLi = ly then /»(X) =X —at-, where ce* is real. 
I t is clear that in this case «/»•,- = rf-,- = 2n — ]Cl.i^ ( l) » where U(l) is 
the number of invariant factors divisible by (X — a?)* as before. 

Case 2. Suppose M; = 2, then /»(X) = (X —a,-)(X — a»-), where <*»• 
is complex. All the invariant factors of (oA—\I) are real, hence 
(k—ai)k and (X—a»)* are divisors of the same //*> invariant 
factors when the complex field is considered and therefore* 

wti =2n-± t? - ± t? = 2n-± 2tf. 

Thus wij = 2n—Yyhsal^ik(l\ where fxi is the degree of / t(X). 
Wio — wii'^Wii — Wi2^Wi2 — Wiz1 •• - , is a set of monotonie non-
increasing positive integers. 

Let niij = Wij-i — 2wij+Wij+.i. Define the characteristic divisors 
of (cyf-Xi) to be the polynomials [/<(X)]*, where [/.-(X)]* ap­
pears a number of times equal to mik/jJLi. 

The invariant factors of (QA—\I) are defined to be in turn 
the product of the highest powers of the fi(K) appearing among 
the characteristic divisors, the product of the second highest 
powers of the/ t(X) appearing among the characteristic divisors, 
and so on. 

The elementary divisors of ($A—\I) are the distinct linear 
factors of the characteristic divisors raised to the powers to 
which the characteristic divisors occur. 

THEOREM 9. The invariant factors of ($A—\I) as defined in 
terms of characteristic divisors are the same as those defined in the 
conventional manner. 

* See Menge, this Bulletin, vol. 38 (1932), pp. 88-94. 
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If [/*(X)]Aj = (X — OLi)h, where ai is real, [/t(X)]fc appears mik 

times among the characteristic divisors of ($A—\I), where 
niik = Wik-i--2wij+Wik+i and wik — 2n — ]C£»r*»'(0 an<^ hence 
eik = mih, since eik = rik-i — 2rik + rik+1 and r « = 2 « — ^ ^ f c ^ . 

If [/KX)]*=(X-a*0*(X-ai)*, where a< is complex f [/<(X)]* 
appears mtk/2 times among the characteristic divisors of 
(QA—\I), where w,-* = w**_i —2W«+W<JH-I. 

In this case Wi* = 2n-^\jlU«\ a n d h e n c e mik = 2t^k)-2t^k+l) 

if the last two equations are combined. The invariant factors by 
the original definition are also real and if (X — a{)k appears eik 

times among the elementary divisors, (k—âi)k also appears e{k 

times and thus/»-(X) = (X—at-)*(X—a»-)* appears £»& times, where 
eik = rik-1 — 2rik+rik+i and r<* = 2 » — ^ ^ ^ w . T n u s eik = t^k) 

— ti(k+1\ and it is evident that mik = 2eik. 
This is sufficient to establish the theorem because the invari­

ant factors defined in terms of characteristic divisors will be the 
products of the same factors since (X — ai)k appears the same 
number of times among the characteristic divisors as it appears 
among the elementary divisors. 

To consider A whose elements are real quaternions, let g(X) be 
the minimum function of A in R and let jf;(X) be the distinct 
irreducible factors of g(X) in R. Let pa be the rank of [fi(A)]3' 
and define pi0 to be n. Then Pio—Pn^Pti—Pi2^Pi2—Pt3è • • • . 

Let eij=pij^i — 2pij+pij+x and let [/»(X)]* appear among the 
characteristic divisors of A a number of times equal to 26^/M», 

where jut- is the degree of /,-(X). 
The invariant factors of A are defined to be in turn the prod­

uct of the highest powers of the /»(X) appearing among the 
characteristic divisors, the product of the second highest pow­
ers of the fiÇK) appearing among the characteristic divisors, 
• • - , in a manner analogous to the above definition in terms of 
the elementary divisors. 

Theorem 4 proves that A is similar to B if and only if the 
matrices *A and <B are similar, where <zA~A and <B^J3. <iA is 
similar to <B if and only if the invariant factors of (<8 — XI) and 
(zA—XJ) are the same. The invariant factors of A as defined 
above are the same as the invariant factors of (c/f—XT). This is 
evident when it is recalled that the rank of/,-(c/f) is 2k if the rank 
of fi(A) is k, and hence Wi& = 2ea. Furthermore, A and o^fhave 
the same minimum function in R, namely, g(X). The distinct 
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irreducible factors of/(X) = \QA—X71 in R are likewise the dis­
tinct irreducible factors of g(X), the minimum function of zA in 
R. Thus the characteristic divisors of ($A—\I) and A are the 
same and hence their invariant factors are the same. The same 
is true of (<23 — \I) and B because <B~i?. The following theorem 
has thus been established. 

THEOREM 10. A is similar to B if and only if the invariant f ac­
tors of A are the same as the invariant f actors of B. 

T H E UNIVERSITY OF WISCONSIN 

T H E T H E O R E M "p-3q. = .pq = p» AND 
HUNTINGTON'S RELATION B E T W E E N LEWIS'S 

STRICT IMPLICATION AND BOOLEAN 
ALGEBRA 

BY TANG TSAO-CHEN 

In this Bulletin, vol. 40 (1934), p. 729, E. V. Huntington 
pointed out that the relation called "strict implication" in C. I. 
Lewis's system of logic can be shown to be substantially equiva­
lent to the relation called subsumption in ordinary Boolean alge­
bra. His main result is as follows: 

Whenever we find the formula "p-^>q" asserted, we may there­
upon write down the formula "p = pq"; and conversely, when­
ever we find the formula "p = pq" established, we may write 
down that the formula up-^>q" is asserted. 

That is, Huntington's relation is 

("p-3q" is asserted)^("pq=p" is established). 

This relation is not the same as the following theorem : 

p-3 q. = .pq = p, 

where " = " takes the meaning of logical equivalence given in 
Lewis's Symbolic Logic. 

This theorem being not explicitly mentioned in Lewis's Sym­
bolic Logic, I shall prove it here. 

Throughout this paper we shall follow Lewis's practice of ig­
noring the distinction, which is characteristic of Huntington's 


