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A PARADOX OF LEWIS'S STRICT 
IMPLICATION 

BY TANG TSAO-CHEN 

The postulates for Lewis's strict implication are nine in num­
ber,* namely, 

[11.1] 

[11.2] 

[11.3] 

[11.4] 

[11.5] 

[11.6] 

[11.7] 

[19.01] 

[20.01] 

Pi -3 qp 

pq -3 p 

p -3 pp 

(pq)r -3 p(qr) 

p -3 <^ ( ' '^ p) 

p -3 q.q -3 r: -3 .p -3 r 

p.p -3 q: -3 .q 

O pq -3 O p 

(Bp, q): ~(/> -3g). ~(p-3 1). 

By the operations of substitution, adjunction, and inference, 
a body of theorems is obtained. But the following theorem, 
which is a paradox of the strict implication, is not explicitly 
mentioned in Lewis's book. 

Any two of the first eight postulates are such that each is de-
ducible from the other, if p~3q be interpreted as lp is deducible 
from q.' 

In order to prove this theorem we assume the following eight 
theorems, f 

1. p ^^ p = q ^-^ q 

Def. 0 = q ~ q 

* The references are to Symbolic Logic, by Lewis and Langford, 1932. 
t For the proof of these theorems see the paper, The theorem "p-3q- = - pq 

= ƒ>" and Huntington's relation between Lewis's strict implication and Boolean 
algebra, by Tang Tsao-Chen in this Bulletin, vol. 42 (1936), pp. 743-746. 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

Def. 

p r^ p = 0 

po = o 

i = ~ O 0 

pq ~3 p- — .i 

p -3 p. = .i 

p -3 q. -3 À 

p -3 q. = : i . £ -3 g 

£ -3 g. = >pq = p. 

Note that the Theorems 4 and 5 are particular cases of the 
following theorem. 

9. If p~3q is asserted, then p-3q- = -i. 

(i) 

(2) 

(3) 

(4) 

(5) 

(6) 

From the above theorem it is very easy to prove the following 
theorem. 

[Hyp.] 

[(1),8.] 

[12.11] 

[(2), (3)] 

[11.03, 12.7] 

[(4), (5), 5.] 

[(6), 8.] 

p^q 

Pa = P 

pq = p. = .pq = p 

Pi = P- = -P = P 

p = p. = .p -3 p 

pq = p. = .i 

p -3 q. = .i 

10. If p~3q and r -3 s are both asserted, then 

p -3 q. -3 ,f 3 5 

and 

[Hyp.] 

[(3), 9.] 

[Hyp.] 

r -3 s. -3 .p -3 q. 

P^q 

p ~3 q. = .i 

r -3 s 

(1) 

(2) 

(3) 

(4) 

(5) 
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[(5), 9.] 

[(4), (6)] 

[11.03] 

[(7), (8)] 

[11.2] 

[12.17] 

[(9), (10)] 

[(9), (H)] 

r -3 s. = .i 

p -3 q. = .r -3 s 

(7) = (1)(2) 

(1)(2) 

(1)(2) -3 (1) 

(1)(2) ~3 (2) 

(1) 

(2) . 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

The paradox stated above is a particular case of Theorem 10, 
and therefore requires no further proof. 
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T H E BETTI NUMBERS OF CYCLIC PRODUCTS 

BY R. J. WALKER 

1. Introduction. In a recent paper f M. Richardson has dis­
cussed the symmetric product of a simplicial complex and has 
obtained explicit formulas for the Betti numbers of the two-
and three-fold products. Acting on a suggestion of Lefschetz, 
we define a more general type of topological product and apply 
Richardson's methods to compute the Betti numbers of a cer­
tain one of these, the "cyclic" product. 

2. Basis for m- Cycles of General Products. Let S be a topological 
space and G a group of permutations on the numbers 1, • • • , n. 
The product of S with respect to G, G(S), is the set of all ^-tuples 
(Pi, • • • , P») of points of S, where (Piu • • • , Pin) is to be re­
garded as identical with (Pi, • • • , Pn) if and only if the permu­
tation (ii,\'%) is an element of G. A neighborhood of (Pi,- • •, Pn) 
is the set of all points (Qi, • • • , Qn) for which Q» belongs to a 
fixed neighborhood of Pi. It is not difficult to verify that the 

t M. Richardson, On the homology characters of symmetric products, Duke 
Mathematical Journal, vol. 1 (1935), pp. 50-69. We shall refer to this paper 
a s R . 


