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As examples we mention yz—xA = Oy yz—#5 = 0, and 
[y-l + (l-x2)1/2]2-x* = 0 with the determination of ( l - * 2 ) 1 ' 2 

which equals 1 when x = 0. These give respectively, at the origin, 
a minimum, a point of inflection, and a cusp with both branches 
concave upward. In none of the three cases is y analytic in x 
at the origin. An example where the locus is a single point is 
given by y+ix = 0. 

In the case of a reducible function f(xy y), the real locus 
f(x, 30=0 neighboring (x0, y0) consists of a finite number of 
configurations of the kind described in the theorem, no two of 
which have any point except (x0, yo) in common. This is easily 
proved by use of theorems on resultants and on divisibility of 
one function by another. Of course two irreducible factors may 
have exactly the same locus. 
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The partial differential equation 

* /dW dV\ 

s=i \dx? dx8/ 

which was considered by Mehlerf in 1866, is a slight modifica­
tion of an equation which occurs in wave-mechanics in the 
theory of the rotator in a plane and in space. J The case in 
which v is a positive integer is then of chief physical interest 
and Mehler's simple solution 

(2) F = n#M 8oo, t ^ = ") 
5 = 1 S = l 

acquires a physical significance. The function Hm(x) is the poly­
nomial of Laplace and Hermite defined by the equation 

* Presented to the Society, December 2, 1933. 
t F. G. Mehler, Journal für Mathematik, vol. 66 (1866), p. 161. 
J A. Sommerfeld, Atombau unà Spektrallinien, wellenmechanischer Ergân-

zungsband, 1929, p. 23. 
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(3) Hm(x) = e*(- Dx)™e-* = (2v)li*e'4><mK*)> 

where 2z=x2. The iaT-notation is that adopted by Appell and de 
Fériet in their book,* the 0-notation is one used in statistics. 

When p = 2we have the equation 

d2V d2V dV dV 
(4) h x y + vV = 0, 

dx2 dy2 dx dy 
which is closely related to one considered by E. L. Ince.f The 
normal or simple solutions are of type 

(5) V = hv-m(x)km(y), 

where hs(x), ks(x) are solutions of the differential equation 

d2u du 
(6) x h su = 0. 

dx2 dx 
Ince generalized this solution by multiplying it by an arbitrary 
function fin) and integrating with respect to n. We shall use 
summation instead of integration and shall suppose nt + 1 to be a 
positive integer. We shall, moreover, put hs{x) =k8(x) =Hs(x), 
where Hs(x) is defined for one-half of the x plane and for all 
values of s by the equation 

Cm+stmmlimH8(x) 

(7) f00 

= 1 [O + iy)s+m^m){y) + (x - iy)s+m<l>(m)(- y)]dy, 
Jo 

which reduces to the well known formula of Laplacet and Mehler§ 
when m = 0 and s is a positive integer. On the right-hand side 
of the equation (7), the many-valued function (x±iy)2n is sup­
posed to be defined for y>0 so that when #—»0 it reduces to 
y2nexp(±inT). When x is complex and unrestricted the inte­
gral is not single-valued, but if x is restricted to the half-plane 

* P. Appell and J. Kampê de Fériet, Fonctions Hyper géométriques et Hyper-
sphêriques, Polynômes d'Hermite, 1926, p. 344. 

t E. L. Ince, Proceedings of the Royal Society of Edinburgh, vol. 44 (1924), 
p. 242. 

Î P.S.Laplace, Théorie Analytiques des Probabilités, Livre 2, Oeuvres, vol. 
7, p. 299. 

§ F. G. Mehler, loc. cit. 
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R(x) > 0 , the integral agrees in value with a single-valued func­
tion which satisfies the differential equation (6). It is, indeed, 
easy to verify by an integration by parts that the definite in­
tegral has the form on the left, where H8(x) is some function of 
s and x such that Hs(x) satisfies (6). The proof of the last prop­
erty depends on the fact that (x+iy)p is a solution of the differ­
ential equation (4). 

To find which solution of (6) the integral represents we first 
choose R(s+m) > 0 and make x—>0. Writing s = 2r and observing 
that* 

(8) 2TT ƒ y«+*'0<«O(y)<*y = C2r+m,mm\2rT (—Wr + — Y 

we find that 

**<0>r(y-r)-2*(l), 

# 2 r ' ( 0 ) r ( - r) = 2r-U2v( Y 

Hence, with the usual notation for the confluent hypergeomet-
ric function (without the suffixes), 

£T*(*)r ( - r) = 2 - 5 ( - , - A F ( - r; - i ; ?-) 

(10) X ' X ' 
/ 1 \ / l 3 * 2 \ 

In Whittaker 's notation, if s is not a negative integer, 

(11) H8(x) = exp (— )D8(x). 

This equation may be used to define the function Hs(x) for all 
real and complex values of x. An equation equivalent to this has 

* The value of the integral is given in a slightly different form by G. N . 
Watson, Proceedings of the London Mathematical Society, vol. 8 (1910), p. 
393. 
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indeed been used for this purpose* for all real and complex 
values of s except negative integral values. When R(s+m) > 0 
we can, by integrating the integral in (7) a sufficient number of 
times, pass to the case in which R(s+m) < 0 . An exceptional 
case arises when 5 is a negative integer. If we take m+s to be a 
negative integer, the integral has a definite value and gives a 
definition of H8(x), but a different notation is used for the func­
tion thus defined, f If m+s is a positive integer, the integral and 
Cm+s,m are both zero for s<0. When 5 is a positive integer 
p — n, the relation (7) gives at once the expansion 

V 

(12) (x + iy)p = Z Cp>mimHp-m(x)Hm(y), 

which may be checked by comparing the terms of degree p on 
the two sides of the equation and noting that both sides satisfy 
the partial differential equation (4). This equation may be used 
to derive from (7) the expansion (s not a negative integer) 

V 

(13) H8+P(x) = ]T (— l)mrn\Cp,mCs,mHs-.m(x)Hp-m(x), 
ra=0 

which may be inverted so as to give an expansion for the product 
in the form J 

n 

(14) H8(x)Hn(x) = ]T) m]-C8,mCn,mHn+8-2m(%). 
m=0 

This relation may be established directly by induction.! When 
s = n the equation takes the form 

(15) [Hn(x) ]2 = E Cn,8n\ (5l)-ijff*(*). 
s=0 

* M. Plancherel and W. Rotach, Commentarii Mathematici Helvetici, vol. 
1 (1929), p. 227. See also S. C. van Veen, Amsterdam Proceedings, vol. 34 
(1931), p. 257. 

t G. N. Watson, loc. cit.; O. Volk, Mathematische Annalen, vol. 86 (1922), 
p. 296; Appell and de Fériet, loc. cit., p. 362. 

î An equivalent expansion is given by Gorakh Prasad for positive integral 
values of s and n. Products of Hermite polynomials are considered also by 
N . Nielsen, Recherches sur les Polynômes de Hermite, Copenhagen, 1918. 

§ Gorakh Prasad, Proceedings of the Benares Society, vol. 2 (1920), p. 18. 
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This series may be compared with Mitra's series* for D% (#), 
00 

(16) [Dn(x)]2= X (2s-l)\\(2n-2s-l)l\[(2s)\\2n+^1i2]-1H28(x)y 

which has been written in an abbreviated form with the aid of 
Schuster's notation f 

( 2 * ) H - ( 2 * ) ( 2 s - 2 ) . . . ( 2 ) , 

( 2 * + l ) ! ! = (2* + 1)(2* — l ) - - - (1), 

and a natural extension of it, namely, 

( - 1 - 2*)!!(- 1 ) ( - 3) • • • (1 - 2s) = 1. 

Mitra's expansion may be generalized with the aid of the well 
known recurrence relations 

(17) Dn+i(x) - xDn(x) + nDn-i(x) = 0, 

(18) DH(x) H xDn(x) - nD^i(x) = 0, 

(19) Hn+1(x) - xHn(x) + nHn^ix) = 0, 

(20) Hi{x) - fiff^iC*). 

The resulting equations are 

Dn(x)Dn-2r(x) 

(21) = 

8=0 

where 

= 2 (2r + 2s - 1)!!(2» - 2r - 2s - \)\\{2s - 2r - 1)!L4., 

A9-(2s)ll(2s - l)!!2»-*--+1'8 = Hu(x); 

Dn(x)Dn-2r+l(x) 

(22) " 
= Z (2r + 2s - l)!!(2f» - 2r - 2s - l)\\(2s - 2r + 1)!!C., 

where 

* S. C. Mitra, Proceedings of the Edinburgh Society, (2), vol. 4 (1934), p. 
27. 

t A. Schuster, Philosophical Transactions, Royal Society of London, (A), 
vol. 200 (1903), p. 181. The extension is also given by Schuster. 
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These equations may be checked* by comparing them with (13) 
and (14) after these have been multiplied throughout by D0

2(x) 
so that they become equations between ZMunctions. The verifi­
cation depends on the identities 

(2m + 2n- 1)!!(- 2n - l)!!(2r - 1)!! 
m 

= E 2°Cm,,Cm+n+r,,sl (2m + 2r - 2s - 1)!! 

• (2s ~2m-2n- l)!!(2w + 2n - 2s - 1)!!; 
(23) V 

(2n + 2s - 1)!!(2» - 2s - l)\\(2s - 2n - 1)!! 

= Z ( - 2)mCp,mC2n-p,mm\(2p -2n + 2s- 1)!! 

• (2w - 2w - 2s - l)!!(2s + 2n - 2£ - 1)!!. 

Let us now consider the integral 

(24) Hv,m(a, x) = I F„(x cos a + y sin ûj)^(M)(y)^y, 

which is convergent when •—7r<2a<7r if Hv(z) is defined by 
(11), for the behavior of Dv(z) when z is large is known. Since 

— Hv(z) = vHv^(z), 
dz 

we readily find that 

d r °° 
— HVt0(a, x) = — # sin a I vHv-i( )<j>(Q)(y)dy 
da J-oo 

(25) + cos a f v#„_i( )^<0 )(^)^y 
J - o o 

= — vx sin aHv-.i,o(a, x) 

+ viy — 1) cos a sin afi"v_2,o(«, #). 

* The expansions obtained by putting n~2r in (21) and w = 2r —1 in (22) 
have already been given by R. K. Varma in a slightly different form, Proceed­
ings of the Benares Society, vol. 10 (1928), p. 11. Some special cases were con­
sidered previously by Gorakh Prasad, Proceedings of the Benares Society, 
vol. 2 (1920), p. 12. 
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Since, when a—»0, 

(26) #,,o(0, x) = Hp(x) = #i7„_iO) - 0 - l)fl;_2(aO, 

we find that a solution of equation (25) is 

(27) Hp>0(a, x) = cosFaiJ,(aO. 

Integrating the integral (24) by parts m times we find 

(28) Hv,m(a, x) = Cv>mm\ cos"~m a sinmaHv_m(x). 

The associated equation* 

#„(x cos a + y sin a) 

(29) " 
= 2^ C¥tm cos"~m a sinm a Hv-m(x)H'm(y) 

was obtained by Kampé de Fériet f in the case when v is a posi­
tive integer by using the generating function of the Hermite 
polynomial, a method which he used also to obtain an expansion 
for H(piXi+p2X2+ - - - +psXs) in a series of simple functions of 
type (1) on the supposition that pi +p<? + • • • = 1. In the gen­
eral case when v is not a positive integer we may consider the 
series in powers of tan a of sec" aHv(x COS a+y sin a). If v is not a 
negative integer, the radius of convergence of this series is de­
termined by the location of the singularities of sec" a, for Hv(z) 
is uniform and analytic over the whole of the finite part of the 
£-plane. The power series for sec" aHv{ ) is thus convergent for 
— 7T < 2a <7r, and so to establish the truth of the series under this 
condition it is only necessary to prove that if / = tan a, then 

V d™ 1 
I(m, v) = sec" aHJx cos a + y sin a) \ 

(30) ' Ldt™ y ;_U 
= Cv,mnilHv-m(x)Hm(y). 

* When v is a positive integer this equation may be checked by observing 
that both sides are polynomial solutions of (4) with the same terms of degree 
v and these terms determine the solution uniquely. 

f J. Kampé de Fériet, Danske Videnskabernes Selskabs, Mathematisk-
Fysiske Meddelelser, vol. 5 (1923), No. 2. See also Appell and de Fériet, loc. 
cit., and V L. Mutatker, Journal of the Indian Mathematical Society, vol. 1 
(1934), p . 53. The case in which a = 7r/4 is due to C. Runge, Mathematische 
Annalen, vol. 75 (1914), p. 130. The equation was in fact, used by him to solve 
a special type of non-linear integral equation. 
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This proof may be carried out by induction. Thus, if we suppose 
that sec" aHv (x cos a+y sin a) = F(v, 7), we have, on differenti­
ating first once and then m times, 

d 
(1 + t2) —F(v, t) = (y- xt)vF(v - 1, /) + vtF(v, / ) , 

dt 

I(m + 1, v) = yvl{m, v — 1) — mxvlim — 1, v — 1) 

+ m{v — m — l)I(m — 1, v), 

for / = 0, and the recurrence relation is satisfied by the expression 
on the extreme right of (30). 

When v is a positive integer, the integral representingHVt0(a:, x) 
may be evaluated by putting z = x cos a + y sin a and using 
Mehler's expansion* 

esc a-exp [esc2 a(x2 cos2 a — 2xz cos a + z2 cos2 a)] 

(31) " 1 
= 2L — co s* oi'H8(x)Hs(z). 

When the integral for Hv>m(a, x) is treated in the same way, we 
obtain the integral 

x (32) I Hv(z)<t>m{z esc a — x ctn a)J2i 

= Cy,mw! cos"~m a sinm aHv-m(x), 

which gives the expansion 

0* /2<t>m(.z csc a — x ctn a) 

(33) °° 
= ( 2 T T ) - 1 / 2 ] £ [(» - m)\]~l cosw~w a sin™ aHn(z)Hn-m(x). 

n—m 

Another expansion may be obtained by writing ctn a — e~l and 
observing that the function F = csc" a-Hv(x cos a+y sin a) is a 
solution of the partial differential equation f 

* F . G. Mehler, loc. cit. 
t This equation may be transformed into one which Laplace solved by 

means of a definite integral, Théorie Analytique des Probabilités, Livre 2, 
Oeuvres, vol. 7, p. 294. The equation was used later by Smoluchowski in his 
theory of the Brownian movement. See B. Hostinsk^, Annales de l ' Insti tut 
Poincaré, vol. 3 (1932), pp. 1-72. 
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d2V dV dV 
(34) x = 

dx2 dx dt 
If this equation has a solution of the form 

00 

(35) V =Y,Ck(t)x
k/kl, 

the coefficient Chit) must satisfy the differential-difference equa­
tion 

(36) C£(t) + kCk(t) =Ck+2(t), 

and if the value of C&(0) is known, an appropriate solution is 
00 

(37) Ck(t) = £ 2-'Cn.*(0)e-*«(l - e^'Y/sl 

Instead of defining Ck(t) as a coefficient we may define it by the 
equation 

/dkV\ 
(38) Ck{t) = fc) o' 

\OX /x—0 

In particular, when F = csc" a-Hv(x cos a+3/ sin a), we have 
(39) Ck(t) = CVtk k\ cos* a esc" aHv-k(y sin a), 

and if n = v — k, the foregoing expansion for Chit) leads to the 
equation 

Hniy sin a) 

(40) 

«=o 

which may be rewritten in the form 

= Z Cn,eHn-s(y(2)ll2)Hs(0)2(n-sU2 sin—* « cos8 « , 

(41) Hniuv) = 2 C„,8ff„_8(«)£a0)f"-8(1 - *»)•/«. 
s=0 

When w is a positive integer, this expansion is equivalent to one 
given by Appell and de Fériet.* The associated integral 

* Appell and de Fériet, loc. cit., p. 346. Equation (40) is related also to 
equation (67) in the paper of S. Goldstein, Proceedings of the London Mathe­
matical Society, (2), vol. 34 (1932), p. 103. 



1935-1 PARABOLIC CYLINDER FUNCTIONS 893 

(42) f Hm(uv)<t>m-S(u)du = tn\Ha(0)v™-s(l - v2)s!2/s\ 
J - o o 

is closely connected with one given by Doetsch.* 
If in the expansion (29) we put a = 7r/4 and set first x = u(2)112, 

y=v(2)112, secondly x = (u+v)(2)112, y = 0, we obtain two ex­
pansions for Hv(u+v). Equating them and writing x for u(2)112, 
y for z/(2)1/2, we obtain the equation (for v>0) 

00 00 

X Cv,mHv-m(x)Hm(y) = J2 CVlmHv-m(x + y)Hm(0). 

This was obtained by Var ma f for the case in which v is a posi­
tive integer. When x—y Runge's expansion 

00 

2'tf,(*(2)1 '1) = E Cv,mH^m(x)Hm(x) 

suggests that it may be profitable to study the expansion of a 
product Hr(x)Hs(x) in a series of functions of type Hn(x(2)112). 
Such expansions have been studied by Mitra. J 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

* G. Doetsch, Mathematische Zeitschrift, vol. 32 (1930), p. 587. 
t R. S. Varma, Proceedings of the Benares Society, vol. 9 (1927), p. 31. 
% S. C. Mitra, Bulletin of the Calcutta Mathematical Society, June, 1926; 

Proceedings of the Benares Mathematical Society, vol. 9 (1927), p. 21; Pro­
ceedings of the Edinburgh Mathematical Society, (2), vol. 4 (1934), p. 27. 
See also S. C. Dhar, Journal of the Indian Mathematical Society, new ser., 
vol. 1 (1934), p. 105. 


