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NOTE ON THE ITERATION OF FUNCTIONS
OF ONE VARIABLE*

BY MORGAN WARD

1. Introduction. Let E(x) be a real-valued function of the real
variable x for some specified range, and let

Eo(x) = X, El(x) = E(x): Tty En+1(x) = E(En(x))r c

represent its successive iterations. The interpolation problem of
defining E,(x) for non-integral values of » was discussed some
time ago by A. A. Bennett,} who reduced it formally to the
solution of the functional equation

(1) Y(x+ 1) = E@(=).
For if Y(x) satisfies (1) and if # is any positive integer,
(2) V(& + n) = E.(¥(x)).

Hence on writing Yy ~1(x) for x, where Y (x) denotes an inverse
of the function ¥(x), we obtain the formula

3 En(x) =y~ (x) + n),

defining E,(x) for a continuous range of values of .

In this note, I propose to give an entirely elementary explicit
solution to this problem of interpolation for all functions E(x)
subject to the following three conditions:}

(a). E(x) is a real, continuous, single-valued function of the real
variable x in therangea Sx < ©,

(b). E(x) >x for all x=a.

(c). Ex") > E(x) if x' >x=a.

We may remark that the functional equation (1) is merely
another form of a famous equation studied by Abel,§

* Presented to the Society, June 20, 1934.

t In two papers in the Annals of Mathematics, (2), vol. 17 (1915-16), pp.
74-75 and pp. 23-60. This second paper contains references to the earlier
literature. A. Korkine (Bulletin des Sciences Mathématiques, (2), vol. 6 (1882),
pp. 228-242) seems to have been the first to consider this problem.

1 These conditions are all satisfied by E(x) =e?, the particular case dis-
cussed by Bennett in the first paper cited.

§ Works, vol. I1, Posthumous Papers, 1881, pp. 36-39.
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(4) o(x) + 1 = ¢(f(=)),

as Abel himself showed.* Here f(x) is a given function, and ¢(x)
is to be determined. This equation has been extensively in-
vestigated of late by modern function-theoretic methods.

2. A Simplification. As a preliminary simplification, we may
assume that the constant ¢ in condition (a) is zero, and that
E(0)=1. For if E(a)#0, the function E'(x)=E%(x+a)/E*a)
satisfies conditions (a), (b), (c) with ¢ =0, while E’(0) =1, and
E(x) =+ E(a)(E'(x—a))"2. On the other hand, if E(a) =0, then
Ey(a) =E(0)>0 by (b). Hence E''(x)=Es(x+a)/Es(a) will
satisfy (a), (b), (¢) with a=0, E’’(0) =1. Since E(x) is continu-
ous and monotonic increasing, it has a unique inverse E_;(x).
Thus, if E’/(x) is given, E(x) =E_i(Ex(a)E"'(x —a)).

From (b) and (c), it follows that for any positive integer #,
E,(x') > E,(x) if x’>x. Since E,.(x) is furthermore continuous
by (a), it has a unique inverse which we shall denote by E_,(x).
If we write y=E,(x), then by (b), y = E,(0), so that E_,(x) is
defined only for x= E,(0). It is easily verified, however, that
for any x =0,

(5) En(Em(x)) = En+7n(x)

for all integral values of # and m, positive or negative, for which
the functions are defined.

3. Solution of (1). We shall next give a solution of the func-
tional equation (1). Let [x] denote as usual the greatest integer
in x so that

(6) 0= Ey0) <« — [x] < E(0) = 1.
Then
¥(x) = Epa(x — [])
is a monotonic increasing continuous solution of (1). For
Y@+ 1) = Egn(e + 1 = [8+1]) = Epgpale — [«])
= E(Bra(o — [¢]) = E@(#),

* Write (1) in the form x+1=y~1(E(¥(x))). Then on substituting ¢~1(x)
for x, we obtain y~1(x) +1 =¢1(E(x)).

t See, for example, Picard, Lecons sur Quelques Equations Fonctionnelles,
1928, Chapter 4. For more recent papers, see the Zentralblatt fiir Mathe-
matik under the index Funktionentheorie: Iterationen.
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and if x'=x+1,
¥(&') = Epon(s’ — [#']) 2 E1(0)
= E(-1(1) 2 Etm(1) > Epn(x — [x]) = ¢(%),
whileif x+1>x" > «,
Y(a") = Eppn(a’ — [x,]) = Epg(a’ — [x])
> Ep(x — [x]) = ¢(x).

The continuity of ¢(x) is obvious if x is not an integer #.
Also if x=mn, €>0, it is clear that lim..o(z+¢€) =¢(n). On set-
ting x=n—e¢, €>0, we have lim.,W(#n—¢) =limc.oE,_1(1 —¢€)

It follows that ¢¥(x) has a unique inverse Y ~!(x). To determine
it, let x be given, and let the positive integer k& be determined by
the inequality

(" E:(0) £ x < Ex(1).
Then
yi(x) = E_i(x) + k.

For first of all, y~!(x) is defined and continuous for all x=0.
Secondly, from (7), 0SE_i(x) <1 so that k=[¢~(x)], the
greatest integer in Yy~!(x). Therefore

YW () = Ex(y(x) — k) = Ex(E_i(x)) = Eo(x) = x.
Thirdly, since Ei5(0) =¢(x) <En(1),
V() = E_a@() + [¢]) + [4]
= E_(;)(En(x — [#])) + [¢] = «.

We obtain then, on substituting in (3), the final result of this
note:

En(%) = Etpsrsn_yon(n + k4 E_(x) — [n+ &+ E_i(x)])
= Epnrirm_ro(® + E_y(x) — [#n + E_x(2)]).

Here the integer k is determined by the inequality (7) and the
formula is valid for all real values of # = 0. The equation (5) may
now be shown to hold for non-integral values of m and #.

(8)
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