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NOTE ON T H E ITERATION OF FUNCTIONS 
OF ONE VARIABLE* 

BY MORGAN WARD 

1. Introduction. Let E(x) be a real-valued function of the real 
variable x for some specified range, and let 

EQ(x) = x, Ex{x) = E(x), • • • , .ErH-iO) = E(En(x)), • • • 

represent its successive iterations. The interpolation problem of 
defining En(x) for non-integral values of n was discussed some 
time ago by A. A. Bennett,f who reduced it formally to the 
solution of the functional equation 

(1) H*+ D = Ety(x)). 

For if yp(x) satisfies (1) and if n is any positive integer, 

(2) *(x + n) = EnbKx)). 

Hence on writing \f/~x(x) for x, where \f/~l(x) denotes an inverse 
of the function \f/(x), we obtain the formula 

(3) En(x) = *(*-'(*) + »), 

defining En(x) for a continuous range of values of n. 
In this note, I propose to give an entirely elementary explicit 

solution to this problem of interpolation for all functions E(x) 
subject to the following three conditions :{ 

(a). E(x) is a real, continuous, single-valued f unction of the real 
variable x in the range a S x < <*>. 

(b). E(x)>xfor allx^a. 
(c).E(x')>E(x)ifx'>x^a. 

We may remark that the functional equation (1) is merely 
another form of a famous equation studied by Abel,§ 

* Presented to the Society, June 20, 1934. 
t In two papers in the Annals of Mathematics, (2), vol. 17 (1915-16), pp. 

74-75 and pp. 23-60. This second paper contains references to the earlier 
literature. A. Korkine (Bulletin des Sciences Mathématiques, (2), vol. 6 (1882), 
pp. 228-242) seems to have been the first to consider this problem» 

t These conditions are all satisfied by E(x)=e?, the particular case dis­
cussed by Bennett in the first paper cited. 

§ Works, vol. II, Posthumous Papers, 1881, pp. 36-39. 
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(4) 4>(x) + l = *(ƒ(*)), 

as Abel himself showed.* Here/(x) is a given function, and </>(#) 
is to be determined. This equation has been extensively in­
vestigated of late by modern function-theoretic methods. | 

2. A Simplification. As a preliminary simplification, we may 
assume that the constant a in condition (a) is zero, and that 
E(0) = 1. For if E(a)^0, the function E'(x) = E*(x+a)/E*(a) 
satisfies conditions (a), (b), (c) with a = 0, while E'(0) = 1, and 
E(x) = ±E(a)(E'(x-a)yi2. On the other hand, if E(a) = 0, then 
E2(a)=E(0)>0 by (b). Hence E"(x) =E2(x+a)/E2(a) will 
satisfy (a), (b), (c) with a = 0, E"(0) = 1. Since E(x) is continu­
ous and monotonie increasing, it has a unique inverse £_i(#). 
Thus, if £ " 0 ) is given, E(x) = E-1(E2(a)E"(x-a)). 

From (b) and (c), it follows that for any positive integer n, 
En{x')>En(x) if x'>x. Since En(x) is furthermore continuous 
by (a), it has a unique inverse which we shall denote by E_n(x). 
If we write y = En(x), then by (b), y^En(0), so that E_n(x) is 
defined only for x^En(0). It is easily verified, however, that 
for any x^Q, 

(5) En{Em(x)) = En+m(x) 

for all integral values of n and m, positive or negative, for which 
the functions are defined. 

3. Solution of (1). We shall next give a solution of the func­
tional equation (1). Let [x] denote as usual the greatest integer 
in x so that 

(6) 0 = Eo(0) £ x - [x] < Ei(0) = 1. 

Then 

\p{x) = E[x](x - [x]) 

is a monotonie increasing continuous solution of (1). For 

yfr(x + 1) = E[x+t](x + 1 — [x + l]) = E[xW(x — [x]) 

= E(E[x](x- [x]) = Ety(x)), 

* Write (1) in the form x+1 = \p~l{E(xP(x))). Then on substituting \P~l{x) 
for x, we obtain tA_1W + l =^~1(^W). 

t See, for example, Picard, Leçons sur Quelques Equations Fonctionnelles, 
1928, Chapter 4. For more recent papers, see the Zentralblatt für Mathe-
matik under the index Funktionentheorie: Iterationen. 
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and if x'^x-j-1, 

= £ [ * ' ] - l ( D à £ [ , ] (1 ) > £ [ . ] ( * - [*]) = * ( * ) , 

while if x + 1 >xf>x, 

t(x') = £[ , , ](* ' - [*']) = £[ ,](* ' - [*]) 

> £[a;](x - [x]) = i/(x). 

The continuity of \p(x) is obvious if x is not an integer n. 
Also if x = n, e>0 , it is clear that lim€-o^(w + €) =\f/(n). On set­
ting x = n — €, e > 0 , we have limÉ_>0'/'(^--€) =limCH>0-£n-i(l — «) 
= E n _ 1 ( l ) = E n ( 0 ) = ^ ( n ) . 

I t follows that yp(x) has a unique inverse \l/~l(x). To determine 
it, let x be given, and let the positive integer k be determined by 
the inequality 

(7) £,(0) g x < E , ( l ) . 

Then 

*-*(*) = £_*(*) + *. 

For first of all, \p~l(x) is defined and continuous for all # ^ 0 . 
Secondly, from (7), 0^E-k(x)<l so that k=[\[t-l(x)], the 
greatest integer in \p~l(x). Therefore 

lKlT l(*)) = Ek(^(x) - *) = Ek(E_k{x)) = E0(*) = *. 

Thirdly, since £ [ * ] ( 0 ) ^ ( * ) < E W ( 1 ) , 

*-*(*(*)) = £-[.](*(*) + [*]) + [*] 

= E_ [ x ](E [ x ](x — [x])) + [a;] = x. 

We obtain then, on substituting in (3), the final result of this 
note: 

(n+ k + £_*(*) - [n+k + E-„(x)]) 
( " ) r T 

= E[n+^+^_A(x)](# + £_*;(» — [» + £-*(*) J). 
Here the integer k is determined by the inequality (7) and the 
formula is valid for all real values of n ^ 0. The equation (5) may 
now be shown to hold for non-integral values of m and n. 
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